
Sentinel: Understanding Data Systems
Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Daniel Vogel, Jian Zhao

{bjglasbe,mtabebe,kdaudjee,dvogel,jianzhao}@uwaterloo.ca
Cheriton School of Computer Science, University of Waterloo

ABSTRACT
The complexity of modern data systems and applications
greatly increases the challenge in understanding system be-
haviour and diagnosing performance problems. When these
problems arise, system administrators are left with the diffi-
cult task of remedying them by relying on large debug log
files, vast numbers of metrics, and system-specific tooling.
We demonstrate the Sentinel system, which enables admin-
istrators to analyze systems and applications by building
models of system execution and comparing them to derive
key differences in behaviour. The resulting analyses are then
presented as system reports to administrators and developers
in an intuitive fashion. Users of Sentinel can locate, identify
and take steps to resolve the reported performance issues.
As Sentinel’s models are constructed online by intercepting
debug logging library calls, Sentinel’s functionality incurs
little overhead and works with all systems that use standard
debug logging libraries.

CCS CONCEPTS
• Information systems→Database administration;Data-
base utilities and tools.

KEYWORDS
performance diagnosis; system behaviour; debug logging

ACM Reference Format:
Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Daniel Vo-
gel, Jian Zhao. 2020. Sentinel: Understanding Data Systems. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20), June 14–19, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3318464.3384691

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384691

1 INTRODUCTION
Modern data management systems are expected to process
a wide range of workloads, which has resulted in consider-
able system complexity [10, 15]. To diagnose performance
problems, administrators rely on system-specific metrics
and debug logs. Unfortunately, the large size of these debug
log files and the sheer number of recorded metrics in these
systems [16] greatly increase the difficulty of debugging;
administrators spend hours reading system logs, understand-
ing them, and acting on insights gleaned from their contents.
Further complicating matters, the cause of a performance
degradation may be due to characteristics of the workload
(e.g. I/O overheads or poorly-written queries), or due to is-
sues in the data system’s configuration (e.g. inadequately
sized buffer pool). Therefore, the administrator must analyze
both the application and the data system to locate the source
of the problem and remedy it.

Although debug logging is ubiquitous in both data systems
and applications [17], emitting logs at a fine-grained level
results in significant performance degradation and vast log
files that administrators must comb through for relevant
details. Consequently, administrators rely on system-specific
metrics and analysis tools to diagnose problems. As modern
companies deploy many different types of data management
systems and applications (e.g. database servers, data lakes),
administrators must possess a robust understanding of all of
these systems and their associated analysis tools.

It would be highly desirable if administrators could use a
single tool for performance debugging and analysis rather
than having to learn, understand and use different suites of
tools for each system and application. To meet this need, we
present Sentinel, a system analysis tool that integrates with
(standard) debug logging libraries (e.g., Log4j2 [3]) to effi-
ciently build models of system behaviour and performance.
Concretely, Sentinel captures debug logmessages andmodels
the relationships between them. As log messages correspond
to system events and system execution logic [5, 6], Sentinel’s
models capture system behaviour. Sentinel uses these mod-
els to detect and pinpoint underlying performance problems
without relying on system-specific features or characteristics.
Notably, Sentinel’s insights are available to all applications

Author manuscript, published in Proceedings of the ACM SIGMOD Conference (Demo), 2020.
DOI: 10.1145/3318464.3384691

http://dx.doi.org/10.1145/3318464.3384691

Figure 1: Sentinel intercepts debug logging library
calls, using them to build per-threadmodels of system
behaviour before forwarding the calls along to the log-
ging library.

and systems using standard logging libraries without requir-
ing significant code modifications.1. Unlike other approaches
[8, 11], Sentinel does not require fine-grained debug logs to
be emitted to disk to abstract them and model behaviour.
Instead, Sentinel intercepts logging calls and constructs its
models in-memory with little overhead.2
We discuss the Sentinel system and its features next. In

Section 3, we describe the scenarios we present in our demon-
stration and highlight the utility of Sentinel’s techniques.

2 THE SENTINEL SYSTEM
Sentinel extracts models of behaviour from applications
and data systems, performing comparisons among these
extracted models to highlight important differences in be-
haviour and performance. We start by discussing how Sen-
tinel extracts these models with low overhead, followed by
how Sentinel efficiently compares these models to pinpoint
important performance differences. We then discuss exten-
sions to these models to include detailed timing information.

2.1 Extracting Behaviour Models
Applications and data systems use debug logging libraries
for both auditing and bottleneck analysis purposes. Debug
logging libraries tend to expose a similar interface, which
Sentinel uses to extract its models.
When the system issues a log(LEVEL, msg, args . . .) call,

Sentinel intercepts it and translates the message to an event
ID using its file name and line number in source code. For
example, suppose that we are handling the first log() call
in Figure 2 and that it corresponds to a GetLock event with
1Integrating Sentinel with PostgreSQL and the TPC-W [14] clients required
changing less than 60 and 15 lines of code in each, respectively.
2In our experiments with 25 clients executing a YCSB-C workload, we
observed that Sentinel reduces PostgreSQL transaction throughput by a
mere 5% while fine-grained debug logging degrades throughput by 90%.

1 LockRe su l t LockAcqu i reExtended (Lock ∗ l o c k) {
2 . . .
3 l o g (INFO , " Get Lock : \%p " , l o c k) ;
4 WaitAcquire (l o ck) ;
5 l o g (INFO , " Lock a cqu i r e d . ") ;
6 . . .
7 }

Figure 2: Simplified lock acquisition code adapted
from PostgreSQL.

ID 3. This event ID is used as an offset into per-thread arrays
of data structures (Figure 1). After determining the event’s
ID, Sentinel increments its occurrence count and the number
of times the system has transitioned from the previously
observed event ID to the current ID. For example, if we are
moving from a prior event with ID 1 to the current event
with ID 3, we increment the count in the third slot of the
event count array (3 in Figure 1) and then follow the pointer
from the first slot in the transition count array to another
counter array, incrementing the third slot (2 in Figure 1)
there. These simple operations on per-thread data structures
are very efficient and avoid cross-thread synchronization.

After updating these statistics for the logmessage, Sentinel
forwards the message to the logging library. The logging
library may write the message to disk depending on the log’s
severity LEVEL. However, Sentinel captures statistics among
events of all granularities without requiring that the logging
library emit everything to disk.
Sentinel’s per-thread data structures are written to disk

periodically or when the system shuts down. Per-thread
counters for event frequencies and event transition counts
are summed to give the total event and transition counts,
thereby deriving an event transition model for the whole sys-
tem. Sentinel compares these transition models to highlight
differences in behaviour and performance.

2.2 Comparing Transition Models
Sentinel analyzes transition models, which correspond to
system behaviour under a given configuration or workload,
to find and present the most significant differences among
events and event transitions to the user (Figure 3).
Sentinel compares extracted event frequencies to deter-

mine which events vary the most in popularity among ex-
tracted models. That is, for transition models 𝑚1 and 𝑚2,
Sentinel reports the top 𝑘 differences in event frequency:

max
(freq𝑚1

(𝑒)
freq𝑚2

(𝑒) ,
freq𝑚2

(𝑒)
freq𝑚1

(𝑒)
)

(1)

where freq𝑚 (𝑒) returns the frequency of event 𝑒 per model
𝑚. By using ratios of frequencies, Sentinel precludes popular

Figure 3: (a) Demo system architecture. Figure 3: (b) Sentinel’s User Interface.

events from always being reported as the top differences.
Sentinel similarly compares event transition probabilities
in extracted models to determine and report the 𝑘 largest
differences in transition probability.

2.3 Extracting CDFs
Although the techniques presented in the previous section
highlight differences in event occurrences and transition
probability, the time it takes to transition between system
events is also important. For example, it is not enough to
know how many times a data system acquires locks to detect
lock contention; it is also important to know how long it
takes to acquire the locks. To this end, Sentinel captures tran-
sition times between events, presenting them as cumulative
distribution functions (CDFs).

As with the event frequencies and transition counts, tran-
sition times are captured and stored on a per-thread basis.
When the system issues a log() function call, Sentinel ob-
tains the current time using the clock_gettime system call.
It compares the obtained time to the one it obtained for the
previous log call; the difference between them is the time
to transition between log calls. As it is impossible to store
all of the transition times between events due to memory
constraints, Sentinel employs adaptive damped reservoir
sampling [2] to store samples for each unique transition.
These samples are used to accurately estimate CDFs.

2.4 Comparing CDFs
In addition to the differences between event frequencies
and event transition probabilities, Sentinel also reports the

top differences in transition time CDFs. To do so, it com-
putes the earth-mover’s distance between two CDFs. The
earth-mover’s distance provides an intuitive measure of the
differences between CDFs as it quantifies the minimum effort
needed to transform one probability distribution into another
[13]. Transition time CDFs with the largest differences are
presented in Sentinel’s UI (Figure 3b).

2.5 Sentinel Interface
Sentinel stores its extracted transition models in a database
and presents detailed comparisons between them in a web ap-
plication. The core Sentinel system is written in Python and
uses numpy and pyemd [12] modules to perform model com-
parisons. The Sentinel user interface uses PHP and Javascript,
rendering its charts and transition graphs with Chart.js [1]
and Cytoscape.js [4] respectively.

Sentinel supports brushing and linking [7] across multiple
visualizations. For example, selecting an event in the event
frequency differences chart will zoom in on the event in the
event transitions pane and present detailed information in
the transition close-up panes. By combining the information
from multiple visualizations, Sentinel presents a detailed and
holistic picture of system behaviour differences.

3 DEMONSTRATION SCENARIOS
Our demonstrations use Sentinel to investigate behavioural
and performance differences in PostgreSQL and TPC-W [14]
benchmark clients under a variety of transaction mixes and
system configurations (Figure 3a). Importantly, Sentinel does

not need a priori knowledge of events or their relative im-
portance; all insights are provided using black-box model
comparisons. Attendees will pose as analysts using Sentinel
to investigate performance issues by comparing PostgreSQL
and benchmark client behaviour in these scenarios to that
of a known good (baseline) configuration (TPC-W ordering
mix). Two such scenarios are described next. A video of these
demonstration scenarios is available online.

3.1 Lock Contention
Our first demonstration provides an overview of Sentinel’s
features and shows how Sentinel can be used to detect and
investigate the common case of database lock contention.
We induce lock contention by inserting a short sleep() in
the BuyConfirm transaction while holding database locks.
We compare this poorly-performing (current) workload’s
behaviour to that of the baseline configuration to determine
the source of the problem.
Using Sentinel’s reports, we determine that there are far

fewer benchmark client events of all types in the current
workload compared to the baseline, indicating widespread
performance degradation (Figure 3b). The largest CDF dif-
ference in client behaviour highlights a large increase in
BuyConfirm transaction execution time. We observe that the
largest differences in database event frequencies and CDFs
of transition time pinpoint increased lock wait events and
lock wait times.
Given this investigation, the analyst concludes that lock

contention is the primary cause of the performance degra-
dation in the current workload. This contention affects the
BuyConfirm transaction while hampering the performance
of the workload as a whole.

3.2 TPC-W Transaction Mixes
Workload access patterns often change [9]; our second demon-
stration investigates complex behavioural differences in such
a case by supposing the transaction mix has changed from
the baseline ordering mix to the TPC-W browsing mix. As
analysts, we observe that performance has degraded and
must determine what has changed.

The largest event differences in client behaviour pinpoint
differences in transaction popularity between the two work-
loads. Read-only transactions like the NewProduct and Best-
Sellers transactions are more popular in the browsing mix
than in the ordering mix, enabling the analyst to conclude
that the browsing mix is more read-heavy than the ordering
mix. The transition time CDFs for these popular read-only
transactions indicate that they take longer to execute than
the update transactions, which affirms that these more ex-
pensive queries are impacting system throughput.

The largest behaviour differences in the database reveal
that the browsing mix has lower query throughput than
the baseline ordering mix despite the baseline workload ex-
hibiting more lock contention and disk writes. Sentinel also
highlights increased checkpoint throttling behaviour in the
browsing mix as fewer dirty pages are written to disk. Thus,
Sentinel indicates that the read-only queries in the current
workload are more complex, resulting in lower overall per-
formance. Given these insights, the analyst optimizes the
highlighted, popular, long-running transactions in the cur-
rent workload to improve performance.

REFERENCES
[1] 2020. Chart.js Github. https://www.chartjs.org/. (2020).
[2] Peter Bailis, Edward Gan, et al. 2016. MacroBase: Prioritizing Attention

in Fast Data. (2016), 541–556.
[3] Apache Software Foundation. 2020. Apache Log4j 2. https://logging.

apache.org/log4j/2.x/.
[4] Max Franz et al. 2015. Cytoscape.js: a graph theory library for visuali-

sation and analysis. Bioinformatics 32, 2 (09 2015), 309–311.
[5] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder

Flora. 2008. An Automated Approach for Abstracting Execution Logs
to Execution Events. J. Softw. Maint. Evol. 20, 4 (July 2008), 249–267.

[6] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. 2009. Automated
performance analysis of load tests. In 2009 IEEE International Confer-
ence on Software Maintenance. 125–134.

[7] D. A. Keim. 2002. Information visualization and visual data mining.
IEEE Transactions on Visualization and Computer Graphics 8, 1 (Jan
2002), 1–8.

[8] Kamdem Kengne et al. 2013. Efficiently Rewriting Large Multimedia
Application Execution Traces with Few Event Sequences. In Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’13). 1348–1356.

[9] Lin Ma et al. 2018. Query-based Workload Forecasting for Self-Driving
Database Management Systems (SIGMOD ’18). ACM, New York, NY,
USA, 631–645.

[10] Ashraf Mahgoub, Paul Wood, et al. 2017. Rafiki: A Middleware for
Parameter Tuning of NoSQL Datastores for Dynamic Metagenomics
Workloads (Middleware ’17). ACM, New York, NY, USA, 28–40.

[11] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Struc-
tured Comparative Analysis of Systems Logs to Diagnose Performance
Problems. Nsdi (2012), 353–366.

[12] Ofir Pele and Michael Werman. 2009. Fast and robust earth mover’s
distances. In 2009 IEEE 12th International Conference on Computer
Vision. IEEE, 460–467.

[13] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The Earth
Mover’s Distance as a Metric for Image Retrieval. International Journal
of Computer Vision 40, 2 (01 Nov 2000), 99–121.

[14] TPC. 2000. TPC Benchmark W (Web Commerce). http://www.tpc.org/
tpcw.

[15] Dana Van Aken, Andrew Pavlo, et al. 2017. Automatic Database Man-
agement System Tuning Through Large-scale Machine Learning (SIG-
MOD ’17). ACM, New York, NY, USA, 1009–1024.

[16] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock:
A Performance Diagnostic Tool for Transactional Databases (SIGMOD
’16). ACM, New York, NY, USA, 1599–1614.

[17] Xu Zhao, Kirk Rodrigues, et al. 2017. Log20: Fully Automated Opti-
mal Placement of Log Printing Statements Under Specified Overhead
Threshold (SOSP ’17). ACM, New York, NY, USA, 565–581.

