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Understanding Missing Links in Bipartite
Networks with MissBiN

Jian Zhao, Maoyuan Sun, Francine Chen, and Patrick Chiu

Abstract—The analysis of bipartite networks is critical in a variety of application domains, such as exploring entity co-occurrences in
intelligence analysis and investigating gene expression in bio-informatics. One important task is missing link prediction, which infers the
existence of unseen links based on currently observed ones. In this paper, we propose a visual analysis system, MissBiN, to involve
analysts in the loop for making sense of link prediction results. MissBiN equips a novel method for link prediction in a bipartite network
by leveraging the information of bi-cliques in the network. It also provides an interactive visualization for understanding the algorithm
outputs. The design of MissBiN is based on three high-level analysis questions (what, why, and how) regarding missing links, which are
distilled from the literature and expert interviews. We conducted quantitative experiments to assess the performance of the proposed
link prediction algorithm, and interviewed two experts from different domains to demonstrate the effectiveness of MissBiN as a whole.
We also provide a comprehensive usage scenario to illustrate the usefulness of the tool in an application of intelligence analysis.

Index Terms—Missing link prediction, bipartite network, bi-clique, interactive visualization, visual analytics.
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1 INTRODUCTION

MANY real-world systems can be modeled as bipartite
networks (i.e., two-mode networks). That is, there

are two types of nodes in a network and links only exist
between different node types. Bipartite relationship analysis
has been applied in a variety of application domains, such as
studying political leanings with voter-vote networks based
on roll call vote records [1], investigating gene-expression
networks in bioinformatics [2], and identifying potential
coalitions with entities co-occurrence networks from reports
in intelligence analysis [3].

One important network analysis task is link prediction
(i.e., detecting missing links), which infers the existence
of implicit relationships between nodes based on currently
observed links [4]. Link prediction is extremely useful
in practice because real-world data is often noisy and
incomplete. For example, as our knowledge on many
biological networks is limited, applying link prediction can
guide laboratory experiments, instead of blindly checking
all possible protein interactions [5]. Also, link prediction can
be employed for recommending products to users based
on purchase networks in e-commerce [6], and suggesting
friendships in social networks [4].

In practice, analysts need to leverage their domain
knowledge to examine algorithmic results. They may ask:
why is this link identified as missing with a high probability,
does it make sense to have a link between these two
nodes in the domain, and how will the network change
by adding one or several detected missing links? This is
because the algorithm output is usually a list of scores
or probabilities for all potential missing links, which may
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be difficult to interpret. Moreover, these results can be
inaccurate due to unseen flaws in algorithms. By leveraging
human domain knowledge based on algorithmic outputs,
analysts can improve the overall performance for real-world
tasks. However, it remains challenging to effectively browse
computational results and explore answers to analytical
questions about missing links.

In order to address the above issues, we propose a visual
analysis system, MissBiN, for detecting and examining
missing links in bipartite networks, in extension to our
prior work [7], [8]. First, this system contributes a novel
link prediction approach that leverages the information of
bi-cliques in a network (Section 4.3), which is partially
inspired by structural hole theory in social science [9],
[10]. The method can be applied, with any existing link
prediction algorithms (e.g., neighbor-based techniques [11]),
to both weighted and unweighted networks. Second, we
develop an interactive visualization to present detected
missing links, allowing for a better understanding of
computed missing links and their impact on a bipartite
network. The visualization enables analysts to compare an
original network with one having specific links interactively
added by analysts. This comparison is achieved via two
of the most commonly used network analysis methods:
metric-based (e.g., computing node betweenness [12]) and
motif-based (e.g., detecting cliques [13]).

The design rationale of MissBiN is grounded by a set
of three high-level analysis questions, which are obtained
through a literature survey and semi-structured interviews
with domain experts. To validate the link prediction in
MissBiN, we conducted quantitative experiments on three
real-world datasets. The results show that our approach
outperforms baseline methods. In addition, we assessed
the visual interface of MissBiN by carrying out interviews
with experts from two different domains: management
science and geographical science. The experts’ feedback
reveals the effectiveness of MissBiN, especially on the
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interactivity of investigating the detected missing links
in their domain-specific datasets. Moreover, to concretely
demonstrate the usefulness of MissBiN, we walk through a
comprehensive usage scenario in intelligence analysis.

In summary, our contributions in this paper include:
1) A novel missing link prediction algorithm for bipartite

graphs inspired by social science theories;
2) A visual analysis system, MissBiN, for exploring and

understanding the predicted missing links; and
3) Evaluations of the algorithm performance based on

real-world datasets as well as the whole system based
on expert interviews.

2 RELATED WORK

In this section, we review techniques for analyzing and
visualizing bipartite networks and discuss algorithms for
link prediction in both general and bipartite networks.

2.1 Bipartite Network Analysis
One of the key computational approaches for analyzing a
general network (i.e., containing only one type of node) is to
calculate the node centrality indices (e.g., betweenness and
closeness), which characterizes the importance of a node
[12], [14]. These metrics are also applicable for bipartite
networks [15], [16]. In addition, any methods for general
network analysis can be employed on a projected bipartite
network (a transformation of a bipartite network to a
general network by combining one type of nodes with links)
[16], but some information may be lost.

Another branch of techniques is to identify special
groups of nodes, such as motifs (e.g., chain, star, and
clique), clusters, and communities [16]. Due to particular
properties of bipartite networks, the motif-based analysis
mainly focuses on extracting bi-cliques (e.g., using LCM [17]
and MBEA [13]). Also, biclustering techniques (e.g., spectral
co-clustering [18]) can be applied to simultaneously group
two types of nodes, relaxing the criteria of bi-cliques.

Without losing generality, MissBiN supports visual
analysis of bipartite networks based on the aforementioned
two common approaches: metric-based and motif-based.
Specifically, MissBiN allows analysts to interactively
investigating the influence of particular missing links by
comparing the results of these two types of analyses on
networks with and without these links.

2.2 Bipartite Network Visualization
Similar to visualizing general networks, two main ap-
proaches to presenting bipartite networks are: node-link
diagrams and matrices. Node-link diagrams emphasize
entities (i.e., nodes) and are more commonly seen, but
suffer from increased visual clutters for larger and denser
networks [19]. On the other hand, matrices emphasize
relationships (i.e., links) and are suitable for many network
analysis tasks [20].

One example method, based on node-link diagrams, is
Anchored Maps [21] that fixes the positions of nodes in one
set. Jigsaw’s List View [22] is another typical example, where
different types of nodes are organized in different lists and
links are applied to represent their connections. Similarly,

Focus+Context lists are employed to show large bipartite
networks [23], [24]. Another variation is to hide links and
employ nested layouts in lists to reveal bipartite relations
by duplicating nodes (e.g., ConTour [25]). Radial layout
of nodes has also been applied. For example, AlertWheel
[26] places nodes onto two concentric rings and utilizes
the edge-bundling technique to display links. To further
emphasize detected bi-cliques, BiSet [27] shows them as
edge bundles between two lists of nodes and provides
interactive features for directing users to potentially useful
ones [28], [29], [30]. By relaxing the positions of nodes,
BicOverlapper [31] displays a bipartite network with a
node-link diagram and highlights sub-network motifs using
boundaries.

For a second approach, bipartite networks are usually
shown as a bi-adjacency matrix, where rows and columns
represent two different types of nodes and links are revealed
as matrix cells at corresponding locations. Example systems
include BiVoc [32], Bicluster viewer [33], Expression Profiler
[34], and BicOverlapper 2.0 [35]. An exception is BiDots [36]
which organizes bi-cliques in rows to emphasize patterns
and places nodes in columns, and allows for interactive
repositioning of nodes.

Based on the above two approaches, hybrid visualization
techniques have been proposed to combine the advantages
of node-link diagrams and matrices. For example, based on
NodeTrix [37], Furby [38] and Bixplorer [39] display each
bi-clique as an individual matrix and connect them with
links to show the entire network. Instead of visualizing the
original network, Xu et al. [40] applied a similar method
for the projected bipartite network. Matchmaker [41] and
VisBricks [42] use extensive charts (e.g., heatmaps and
parallel coordinates) to display bi-cliques and bundled links
to indicate their relationships.

While the design of MissBiN has been inspired by the
above systems, none of them has addressed the problems of
detecting and visualizing missing links. More particularly,
we employ a matrix-based design because links are the
focus in our tasks and need to be emphasized visually.

2.3 Missing Link Prediction Algorithms
Common link prediction algorithms for networks roughly
fall into two major categories: learning-based, and
similarity-based. There are some comprehensive surveys
such as [11], [43], [44], [45].

The learning-based methods usually treat link prediction
as a binary classification problem and train a machine
learning model to predict the class label (i.e., positive
for potential linking) for each non-connected node pair.
One typical approach is feature-based classification, which
extracts features based on node attributes, topological
structures, social theories, or combinations of them [46],
[47], [48]. Another is based on probabilistic graph models
including relational model [49] and entity-relationship
model [50]. These techniques, although effective, are less
general, often requiring some additional information (e.g.,
semantic node attributes) in addition to the observed
network structure.

The similarity-based methods attempt to compute a
similarity score for every non-connected pair of nodes
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and rank all these potential links. Ways of computing the
similarity metrics include random-walk based simulation,
and neighbor-based measures, such as common neighbors,
Jaccard coefficient, Adamic-Adar coefficient, and prefer-
ential attachment [11], [43]. Researchers have extended
some of the similarity metrics to the bipartite network
scenario [51]. Particularly, Xia et al. [52] proposed to increase
link prediction accuracy via measuring structural holes in
networks [10]. However, it cannot fit generally with any
node similarity metric.

We move one step further by integrating important
structural information in bipartite networks, on top of
the link prediction scores generated by existing common
approaches, to improve the performance. In this paper, we
adopt the similarity-based approach (Section 4.2), because
the information that the learning-based approach requires
for training is usually dataset-specific (e.g., node attributes).
The learned models may only perform well on networks
with data features and typologies similar to the training
set. To handle a more generic situation, we aim to perform
link prediction only based on the topology of a network.
Moreover, our approach (Section 4.3) can be used with any
link prediction methods that produce a list of scores.

3 SYSTEM DESIGN AND OVERVIEW

Here we introduce the design of MissBiN, a visual analysis
system for detecting and understanding missing links in
bipartite networks. Our main goal is to allow analysts
to better investigate the characteristics of a network
by combining automatic link prediction with interactive
exploration. Thus, they may better understand the meaning
of missing links by integrating their domain knowledge
with algorithmic results.

As few works have been done in the visual analysis
of missing links in networks, to design MissBiN, we aim
to answer the following What, Why, and How questions
about missing links. This is inspired by the questions
asked by Brehmer et al. in their work about forming
abstract visualization tasks [53]. Further, we conducted
two 30-minute semi-structured interviews with our domain
experts from management science and geographical science
to verify and consolidate these questions. The first expert is
a full professor at the management school of a university;
and the second expert is a postdoctoral researcher at the
computer science department of a university. More detailed
background of the experts will be described in Section 7.
The analysis questions are:
Q1. What are the missing links? The tool should provide

an effective and robust method of discovering missing
links in the network. Also, it should offer an overview
of the scores of detected missing links, and alternative
results from different link prediction algorithms, to
combine the benefits of different approaches.

Q2. Why is a link missing? The tool should support human
in the loop for investigating potential meanings behind
a missing link by providing information such as the
data context (e.g., node neighbors). This is because
automatic algorithms may generate results that are not
meaningful for particular domains.

Link prediction

Motif detection

Node metrics 
computation

Visual exploration 
of missing links

Visual analysis of 
network motifs

Examination of 
node metrics

Analysis Module Visualization ModuleData

Fig. 1. The MissBiN system architecture.

Q3. How does a missing link impact? The tool should allow
for evaluating the influence of particular missing links
to better understand the characteristics of the network
and the detected missing links. Therefore, an analyst is
able to wisely utilize the valuable parts of the results.

In summary, these questions are the motivating factors
on studying missing data in a systematic way, gradually
deepening the analysis. The What question is to detect
missing links by employing the algorithm and then some
visual representation. The Why question is to verify missing
links by leveraging an analyst’s domain knowledge through
visual interfaces. The How question is to mitigate missing
links by testing the links’ effects as if they exist in the
network, with a combination of human judgment and
algorithm outputs. Note that there exist more specific
analytical questions. We use these three high-level questions
to motivate our visualization design in a similar way to
Brehmer et al.’s approach [53].

Following these questions and rationales, we design and
develop MissBiN, which includes an analysis module and
a visualization module (Figure 1). The analysis module
supports missing link prediction in bipartite networks and
two of the most common ways of observing networks,
including node metrics and sub-network motifs. The
novel link prediction method leverages the structural
information of bi-cliques in the networks, which can be
integrated with most link prediction algorithms [43]. The
visualization module shows outputs from the analysis
module and supports analysts in exploring the data
with user interactions. An analyst can visually investigate
computed missing links, and further examine the potential
impact of missing links by comparing analytical results of
the original network to those of the network with some
hypothetically-added links.

.

4 MISSING LINK PREDICTION OF MISSBIN
To answer the What question (Q1) in MissBiN, we propose
a novel bi-clique oriented approach for link prediction
by augmenting existing similarity-based algorithms with
topological information of bi-cliques.

4.1 Problem Definition
A bipartite network can be defined as G = 〈X,Y,E〉, where
X and Y are two non-overlapping sets of nodes and E is
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Fig. 2. a) An example bipartite network, where the two groups of nodes
are: X = {xi} and Y = {yi}. b) An illustration of two overlapped bi-
cliques, Ci = 〈Xi, Yi, Ei〉 and Cj = 〈Xj , Yj , Ej〉, each of them shown
as a rectangle (bi-adjacency matrix), where Ei = Xi × Yi and Ej =
Xj × Yj . Therefore, M1 = Ei ∩ Ej represents the intersection; M2 =
Ej − Ei and M3 = Ei − Ej represent their differences; and M4 =
(Xi −Xj)× (Yj − Yi) and M5 = (Xj −Xi)× (Yi − Yj) represent the
links needed to form a larger bi-clique.

the set of links that only exist between X and Y , i.e., e =
〈x, y〉 ∈ E where x ∈ X and y ∈ Y . For a bipartite network,
the number of all possible links is |X| · |Y | and we denote
this set of links as U . Thus, a link prediction problem is to
identify which links are likely missing in the set U − E.

4.2 Status Quo Similarity-Based Link Prediction
This type of method first computes the similarity score of
every non-connected pair of nodes in the set U −E. Then, it
can generate a ranked list of missing links with decreasing
scores for prediction.

One way to compute the similarity between pairs of
nodes is via a random walk. We adopt a specific approach
called random walk with restart (RWR) [54]. Consider a
random walker starting from node x. At each step of the
walk, it iteratively moves to a random neighbor of the
current node with probability α and restarts the walk at
node x with probability 1 − α. To accommodate bipartite
networks, we let the random walker run for an odd number
of iterations, such that it always stops at nodes in the
other set. As the above measure is not symmetric, the final
similarity score of each pair of nodes is: s(x, y) = pxy + pyx.

Another way of measuring similarity is based on
comparing neighborhoods of two nodes. The assumption is
that the more similar the topology of two neighborhoods
is, the more likely the link connecting the two nodes is
missing [11], [43]. This can be applied to both general
networks and bipartite networks. However, for a bipartite
network, neighbors of two possible connected nodes, x ∈ X
and y ∈ Y , must be from different sets of nodes. Following
the ideas in [51], [52], we define the one-hop neighbors of
a node x in a bipartite network as Γ(x), and we further
define γ(x) as the set of the two-hop links of a node x.
That is, γ(x) = {〈xi, y〉 ∈ E : xi 6= x, y ∈ Γ(x)}.
For example, in Figure 2a, Γ(x4) = {y3, y4} and γ(x4) =
{〈x1, y3〉, 〈x5, y3〉, 〈x1, y4〉, 〈x2, y4〉, 〈x3, y4〉}. Based on this
definition, a number of similarity metrics can be applied to
compare the neighbor context of two nodes, γ(x) and γ(y):
• common neighbors: s(x, y) = |γ(x) ∩ γ(y)|;
• Jaccard coefficient: s(x, y) = |γ(x)∩γ(y)|

|γ(x)∪γ(y)| ;
• Adamic-Adar coefficient:
s(x, y) =

∑
〈m,n〉∈γ(x)∩γ(y)

1
log |Γ(m)|·|Γ(n)| ;

• and preferential attachment: s(x, y) = |γ(x)| · |γ(y)|.

4.3 Novel Enhancement with Bi-Clique Information
Based on the above algorithms, we propose a novel
approach that integrates one important type of structure
in bipartite networks, bi-cliques (complete bipartite graphs).
Formally, a bi-clique is defined as a sub-network, G′ =
〈X ′, Y ′, E′〉, whereX ′ ⊆ X , Y ′ ⊆ Y , andE′ ⊆ E, and there
exists a link e = 〈x, y〉 ∈ E′ between every pair of nodes,
x ∈ X and y ∈ Y . Many algorithms have been proposed
to efficiently detect all bi-cliques in a network, and in this
paper, we adopt the MBEA algorithm [13].

Our intuition is that missing links between nodes from
different bi-cliques to form a larger bi-clique should carry
more weight. This is inspired by the structural hole theory in
social science [9], [10]. That is, a person tends to know what
other people in the same community know; and to increases
the overall information flow in the entire network, it is
beneficial to add (missing) connections that link people from
different communities. The literature also indicates that the
structural hole theory is useful in bipartite network analysis
[52], but their method is less general (see Section 2).

As is shown in Figure 2b, considering two bi-cliques
as two communities that have some nodes in common;
each missing link between the non-overlapping nodes (i.e.,
M4 and M5) from the two communities contributes to the
formation of a bigger community that benefits all the nodes.
If the two communities have many nodes in common, each
of the few missing links that can be added carries more
value, as a bigger community can be formed fairly easily.
On the other hand, if the two communities have less in
common, then more links need to be added to merge them,
and thus each of the missing links carries less value.

Following this intuition, we develop an algorithm to
re-rank the missing link list generated by the above
similarity-based methods. As is shown in Algorithm 1, the
algorithm computes weights, we for all missing links based
on the bi-cliques in the network. The weight of a link
is the sum of all the values calculated when processing
each pair of bi-cliques (line 4-13), in which the value is
determined by the size of the two bi-cliques and their
overlap (line 9). Intuitively, as is shown in Figure 2b, the
value computed in each iteration (line 9) corresponds to
|M1|

|M4|+|M5| where | · | represents the cardinality, i.e., the
number of links in the bi-clique or the “area” of the matrix.
We add this value to every missing links in M4 and M5 for
the current pair of bi-cliques (line 10-12). We only compute
and accumulate we for the bi-clique pairs that have an
overlap ratio o (line 5) larger than a threshold (line 6-8),
where o corresponds to |M1|∑5

i=1
Mt

. This filters out bi-clique

pairs with no or small overlap, which cause marginal effect
on we but need more computation time. Then, we normalize
the weights and the similarity scores by their maximum
values, and generate a new ranked list with the new scores
with s′(x, y) = w(x, y) · s(x, y).

We also tested other ways of computing we, such as
letting w = |M1|∑5

t=2
Mt

(line 9). We finally decided to use

the form in Algorithm 1 based on our experiments. One
thing to note is that the above re-ranking approach can
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Algorithm 1: Missing link ranking.
Input : A list of bi-cliques, L = {Ci = 〈Xi, Yi, Ei〉}, detected

in a bipartite network G = 〈X,Y,E〉.
Output: Weights, w, for all non-observed (missing) links in G.

1 foreach e ∈ X × Y − E do
2 we ← 0;
3 end
4 foreach bi-clique pair (Ci, Cj) from L do
5 o← |Xi∩Xj |·|Yi∩Yj |

|Xi∪Xj |·|Yi∪Yj |
;

6 if o < threshold then
7 continue;
8 end
9 w = |Xi∩Xj |·|Yi∩Yj |

|Xi−Xj |·|Yj−Yi|+|Xj−Xi|·|Yi−Yj |
;

10 foreach e ∈ {〈x, y〉;x ∈ Xi −Xj , y ∈
Yj − Yi} ∪ {〈x, y〉;x ∈ Xj −Xi, y ∈ Yi − Yj} do

11 we ← we + w;
12 end
13 end

be employed to the probabilities generated by any link
prediction algorithm.

5 EVALUATION OF MISSING LINK PREDICTION

To validate the accuracy of the proposed link prediction
approach in MissBiN, we conducted quantitative experi-
ments with three bipartite networks. In this section, we first
describe these datasets, and then discuss the experimental
design and results.

5.1 Experimental Datasets
The first dataset is a weighted person-place network
extracted from the Atlantic Storm corpus [55], which
contains 111 fictional intelligence reports. We extracted
person and place entities from the reports, and computed
relationship weights between entities based on the numbers
of co-occurrences and normalized word distances in the text
(the higher the weight is, the stronger the relationship that
two entities have). Because real-world dataset is usually
noisy, we followed the method in [52], and we further
extracted the core network by removing nodes with less
than three neighbors, resulting in a bipartite network with
207 person nodes, 165 place nodes, and 1,718 links.

The second dataset is a weighted user-conversation
bipartite network detected from Slack communication
messages of a group within an IT company. We divided
chat message logs in one month into multiple conversations
based on the time intervals between messages. Then, we
identified the users in these conversations, and constructed
a bipartite network connecting users and conversations.
The weight of a link is calculated based on the number of
words that a user-contributed to a conversation. Again, we
extracted the core network for our experiments, leading to
41 users, 61 conversations, and 258 links.

The third network is built from the IEEE VIS publication
corpus [56] that contains meta-data of the papers published
from 1990 to 2015. We constructed an unweighted
bipartite network between authors and papers using this
information. Similarly, we filtered out nodes with less than
three neighbors and obtained a final network of 442 authors,
1,160 papers, and 2,140 links.

5.2 Experimental Setup
Because there is no ground truth for missing links, we
followed a scheme commonly used in the literature (e.g.,
[51]) to design our experiments. That is, we randomly
removed a certain number of links from an original network,
applied the link prediction algorithms on this new network,
and measured the performance by comparing the predicted
links with the removed (actually missing) links (i.e., the
ground truth).
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Fig. 3. Experimental results of our bi-clique (bc) oriented methods
(Section 4.3) and the baselines (Section 4.2), i.e., bc [...] v.s. [...],
on R-Precision or AUC PR with the five networks, including three
unweighted networks and two weighted networks (denoted with *). The
x-axis is the number of links removed from the original dataset in order
to construct the input network. The links are removed at 1%, 2%, 5%,
10%, and 15% of the original dataset.
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We evaluated our bi-clique oriented approach with
re-ranking of the results from five existing link prediction
algorithms, including common neighbors, Jaccard coeffi-
cient, Adamic-Adar coefficient, preferential attachment, and
random walk methods [11], [43]. For each algorithm, to
test its performance under different situations, we randomly
removed 1%, 2%, 5%, 10%, and 15% of links from the list of
all links of an input network. For each of these conditions,
we performed the experiment five times in order to reduce
sampling bias. As two of our datasets are weighted bipartite
networks (i.e., Atlantic Storm and Slack communication),
we binarized these two networks and conducted our
experiments on five different datasets, including three
unweighted networks and two weighted ones. For the
weighted networks, we extended the algorithms to their
weighted versions, in particular, computing weighted sums
based on links using the equations in Section 4. Algorithm 1
was not modified because it does not consider link weights,
although weighted areas of M1, M2, and M3 can be used,
which is left for future work.

For implementation, we set 0.05 as the threshold of
Algorithm 1. The bi-clique detection method, MBEA [13],
requires a minimum bi-clique size as its parameter, where
we used 3 for both types of nodes. Thus, the input to
Algorithm 1 contained bi-cliques larger than 3 × 3. For the
random walk [54], we chose 101 as the number of iterations.

5.3 Results
We used two metrics from the field of information retrieval
to measure the performance of the algorithms: R-Precision
and AUC PR [57]. As the algorithms generate a ranked list
of missing links with scores, the R-Precision is the ratio of
the number of relevant items retrieved to the rank when the
rank equals the number of relevant items in the collection.
For example, if we remove n links from the network and
the algorithm retrieves m of those links in its top-n results,
the R-Precision is m

n . The AUC PR is the area under the
precision-recall curve. Using the same example, consider
that the algorithm retrieves m correct links in its top-k
results. The curve is formed by iteratively computing the
precision (mk ) and the recall (mn ) with k ranging from 1 to
the entire rank list length.

Figure 3 displays the results of our experiments with the
three datasets, in which the columns represent the Atlantic
Storm, Slack communication, and IEEE VIS publication
networks respectively, and the first two rows indicate their
unweighted versions and the last two rows are the weighted
ones. The performance metrics (the y-axis, R-Precision or
AUC PR) were computed in each run with the input
network built by removing a certain percentage of the links
(the x-axis). Table 1 further shows the average performance
of each condition of the experimental results in numbers.

From Figure 3, we can observe that the bi-clique oriented
methods enhance the baselines in all the conditions with
different levels of improvement on both R-Precision and
AUC PR. Some of the performance gain is substantial, where
the maximum improvement appears with preferential
attachment (PA) for the unweighted Atlantic Storm dataset
(0.564 for R-Precision and 0.557 for AUC PR).

For the unweighted Atlantic Storm and Slack com-
munication networks, the preferential attachment based

method performs the best. For the VIS publications network,
the overall performance is worse than those for other
datasets, which might be because the network is sparse.
The best performing method is based on Adamic-Adar
coefficient (AA), but the largest improvement appears
with common neighbors (CN). For weighted networks,
the best performers are common neighbors (CN) and
preferential attachment (PA) with the Atlantic Storm and
Slack communication datasets respectively. Further, from
Figure 3, the performance of all the algorithms are generally
better as more links are removed from the original datasets.
This may result from that the task is harder when
there are few correct missing links but a lot of possible
connected links; while, as more and more links are removed,
the performance might drop because of less information
remained in the networks. However, future studies need to
be conducted to verify this.

Moreover, for a random prediction on a bipartite
network G = 〈X,Y,E〉 with a fraction f links removed
for the experiment, the probability of selecting a correct link
is p = fE

XY−(1−f)E . For selecting fE links, the probability is
approximately fE · p, and thus the R-Precision is fE·p

fE =
p. Using this equation, the average R-Precision for this
random algorithm with the same experimental settings
can be obtained: 0.003, 0.007, 0.0003 for Atlantic Storm,
Slack communication, and VIS publications networks,
respectively. We can see that our approach is orders of
magnitude better, even for the VIS publications network
where it performs the worst.

6 VISUAL INTERFACE OF MISSBIN
Algorithms are not always perfect, and the computed
missing links may not always be meaningful. Real-world
scenarios are far more complicated, and it is difficult to
consider every nuance in all domains for the algorithm
design. Thus, it is critical to involve analysts in the loop
to examine algorithmic results, which couples the flexibility
of humans with the scalability of machines.

To this end, we design a visual interface as part
of MissBiN to help analysts to better make sense of
missing links identified by the aforementioned methods in
bipartite networks. This visualization module consists of
five interactively-coordinated views: a Network View and
a Link List View to support the exploration of missing links,
a Motifs Overview and a Detail View to offer the analysis
of motifs, and a Metrics View to display node-based metrics
(Figure 4). These views display outputs from the analysis
module in visual forms to allow analysts to effectively
answer the What, Why, and How questions about missing
links. In general, we aim to design a simple visualization
that can be easily-understood and self-explanatory.

6.1 Visual Exploration of Missing Links
MissBiN supports the visual exploration of predicted
missing links through two views. First, the Network
View (Figure 4a) displays the bi-adjacency matrix of a
bipartite network, where the row and the column represent
two different types of nodes respectively. The links are
represented as squares in the intersections of rows and
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TABLE 1
More details of the experimental results shown in Figure 3.

Atlantic Storm Slack communication VIS publications Atlantic Storm* Slack communication*

R
-P

re
ci

si
on

JA .395 .428 .032 .421 .424 .004 .105 .126 .020 .405 .423 .018 .332 .341 .009
CN .359 .580 .221 .179 .424 .245 .066 .129 .063 .342 .552 .209 .202 .339 .138
AA .440 .455 .016 .202 .219 .016 .107 .152 .045 .405 .418 .013 .203 .218 .015
PA .021 .585 .564 .025 .590 .565 .000 .012 .012 .007 .226 .219 .096 .432 .336
RW .467 .531 .064 .451 .464 .013 .096 .112 .016 .487 .552 .065 .398 .407 .009

A
U

C
PR

JA .398 .451 .053 .301 .325 .024 .039 .053 .014 .393 .444 .051 .225 .249 .024
CN .305 .607 .302 .148 .326 .178 .025 .063 .039 .300 .578 .277 .133 .285 .152
AA .398 .429 .031 .170 .200 .030 .039 .068 .029 .379 .406 .027 .153 .177 .025
PA .008 .566 .557 .021 .528 .507 .000 .003 .002 .005 .212 .207 .055 .406 .352
RW .435 .516 .082 .346 .377 .031 .039 .052 .013 .448 .525 .078 .279 .308 .029

* denotes weighted networks. JA: Jaccard coefficient; CN: common neighbors; AA: adamic-ardar coefficient; PA: preferential attachment;
RW: random walk. For each condition (i.e., in a table cell), the three numbers indicate (1) the average metric of the baseline, (2) the average
metric of the proposed method, and (3) the improvement, over the five runs (on removing different numbers of links from the original
dataset). The highest performance and improvement are highlighted in bold for each metric in each dataset.

a b c

de

f

Fig. 4. An analyst is investigating the predicted links in a person-conversation bipartite network using MissBiN which consists of: a) a Network View,
b) a Link List View, c) a Motifs Detail View, d) a Motifs Overview, and e) a Metrics View. f) A Document View is added later for showing context
in a specific case of exploring intelligence reports (Section 8). The existing links in the network are shown in a yellow-green colorscale, where the
intensity reveals the weight of a link. The predicted missing links are displayed in a white-purple colorscale, where a darker color reflects a higher
score determined by the link prediction algorithm. Hovering over a bi-clique in b) highlights the corresponding rows and columns in a) in red.

a b c

Fig. 5. The Network View of the bi-clique oriented link predictions of a person-conversation bipartite network based on (a) the adamic-adar
coefficient, (b) the preferential attachment, and (c) the random walk with restart algorithms.
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columns. We use this matrix-based design because it is more
effective to visualize dense networks [19], [20], where in our
case we need to show a large number of links, including
both the original and predicted missing links. This helps to
reveal What the missing links are (Q1).

Second, the Link List View (Figure 4b) shows the
computed missing links linearly by probability or score,
where each link is visualized in a similar way to that in the
Network View. Additional information such as the rank and
the connecting nodes of the link is provided. This Link List
View works together with the Network View, allowing an
analyst to better explore the link prediction from different
perspectives (Q1).

A number of user interactions are offered. In the
Network View, an analyst can reorder the rows and columns
of the matrix with certain criteria such as the node label, the
average prediction score, and the total number of detected
missing links. Hovering over a link or a node highlights
the corresponding row and/or column, and displays some
detailed information, such as the prediction score. Similar
interactions are offered in the Link List View. An analyst
can also filter the matrix based on the prediction score,
for example, to reveal the most probable missing links
suggested by the algorithm. Such user interactions help
analysts understand the missing links by providing the data
context of a node from different perspectives (Q2). However,
other interactions such as interactive legend [58] can be
integrated to enhance the visual exploration experience.

Moreover, different link prediction algorithms can be
applied and viewed in the visualization. For example, from
Figure 5, we can observe that different algorithms may
generate significantly different predictions. Thus, an analyst
can use the visualization to combine the advantages of
various methods in real-world applications (Q2). However,
a side-by-side visualization of graphs [59] needs to be
developed to facilitate this, which is left for future work.

These two views offer an overview of the structure of a
bipartite network and the performance of the missing link
prediction (Q1). Having this image in their mind, analysts
can further utilize their domain knowledge to investigate
the detected missing links and understand the meaning
behind them (Q2). Specifically, an analyst can explore link
prediction results and hypothetically add certain missing
links to examine their influence with visual analysis of
motifs and metrics described in the following. The added
links are marked as black crosses on the matrix and also
displayed at the top of the list (Figure 4ab). A group of links
can be added at once by selecting them from the matrix.

6.2 Visual Analysis of Network Motifs
Motif (i.e., a sub-network context of closely related nodes)
analysis is one major approach to understanding the
topology of a network. In bipartite networks, a bi-clique
is one of the most important structural patterns. Other
motifs (e.g., trees and chains) are less meaningful and not
utilized much. MissBiN provides a Detail View (Figure 4c)
and an Overview (Figure 4d) for browsing the motifs at
different scales (Q2). In the Motifs Detail View, bi-cliques
are displayed as small multiples of matrices in similar visual
encodings to the Network View (Figure 4a), highlighting the

most important motifs. Essentially, a bi-clique is a portion of
the bi-adjacency matrix of the entire network. In addition,
the Motifs Overview displays all the bi-cliques as dots in a
two-dimensional space based on MDS projection [60]. The
distance between two bi-cliques is measured with the sum
of the two Jaccard distances of the corresponding node sets
of the bi-cliques (i.e., 1− Xi∩Xj

Xi∪Xj
+ 1− Yi∩Yj

Yi∪Yj
).

These two views not only support the visual exploration
of all bi-cliques detected in the network, but also the
investigation of the impact, if certain missing links are
added (Q3). The Motifs Detail View supports comparing
the two sets of bi-cliques detected in the networks with and
without added links by an analyst. MissBiN organizes the
bi-cliques of the new network (with added links) in three
columns: removed bi-cliques (those in the original set but not
appear in the new set), newly-added ones (those appear in
the new set but not the original set), and unchanged ones
(those appear in both sets), in borders of red, green, and
gray, respectively (Figure 4c). Specifically, bi-cliques can be
added when the new links make nodes connected to form
a new bi-clique; and bi-cliques can be removed when the
new links make smaller bi-cliques merge into a bigger one.
In each column, the default order of bi-cliques is by size,
which can be changed to other sorting criteria. Similarly,
the Motifs Overview encodes these bi-cliques in the three
different colors (Figure 4d).

We further compute the similarity between the added
and removed bi-cliques using the Jaccard distance to
support a better understanding of the structural changes
and the impact of missing links (Q3). In the Motifs
Detail View, when an analyst hovers over a bi-clique, this
information is shown as gray ribbons connecting the related
bi-cliques, with the thickness mapped to their pairwise
similarity value (Figure 4c). Moreover, corresponding rows
and columns of the hovered-over bi-clique in both the
Overview and the Detail View are highlighted in the
Network View to offer more context. Although in MissBiN
we currently only allow for one type of motif (i.e., bi-clique),
other forms of motif analysis can be easily supported with a
similar visualization.

6.3 Examination of Node Metrics
Computing node-metrics is a common way of getting to
learn a big picture of the characteristics of a network in
social sciences and other domains (Q2). The Metrics View
in MissBiN (Figure 4e) supports this type of analysis by
presenting a number of metrics in a tabular view: degree,
closeness, and betweenness centralities of before and after
adding certain missing links, etc. Changes of metric values
are highlighted in red, revealing the effect of added links
(Q3). This table is also interactively linked with other
views. For example, hovering over a row emphasizes the
corresponding node in the Network View. Since there might
be a large number of nodes (rows), a search function
is provided, and hovering over a node in other views
automatically navigates to that row in the table.

7 INITIAL EXPERT FEEDBACK

To evaluate the visual interface of MissBiN, we conducted
qualitative interviews with the two experts whom we
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talked to during the design of the system. As mentioned
before, they have different technical backgrounds including
management science and geographical science. During the
interview, we first reviewed the background of this research
and introduced the features of the tool. We then loaded
the datasets that the experts were interested in, and let
them conduct free-form visual analysis with MissBiN. We
provided help if the experts were confused about the tool
features or had questions about anything. The think-aloud
protocol was employed. We also observed their interactions
with the tool and took notes when necessary. After the
free-form analysis, we conducted follow-up interviews with
the experts to collect their further feedback. Each interview
lasted for about an hour.

In general, both experts appreciated MissBiN in many
aspects, particularly the interactivity of missing links
investigation, and they were willing to use the tool in their
research in the future. In the following, we discuss the
experts’ feedback in more detail.

7.1 Interview Study I
The first expert (E1), a management school professor,
has extensive research experience in analyzing the social
dynamics of people in large organizations and online
communities with quantitative methods. For his interview,
he explored an employee-conversation network extracted
from chat logs of an enterprise communication tool. That
is, the network contains two types of nodes including
employee and conversation, and each link reveals that an
employee participated in a conversation.

Examining overall communication. E1 wanted to
investigate patterns revealed in the social relationships of
employees in the company, as shown in Figure 4. He
advocated that link prediction in such a network is critical,
and it implies that some employees could beneficially
participate in certain conversations (Q1). As there were
many missing links with high probabilities, E1 commented
that “These links can be used for recommendation of people to
connect and chat channels to join, and indicators for the social
health of the entire team.”

Identifying missing social interaction. E1 also appre-
ciated the Motifs Detail View (Figure 4c) where he could
investigate the effect of missing links from the motifs
analysis perspective and had a lower-level view of the
network topology (Q3). He commented that “I would like
to see this applied to the analysis of general network patterns
(motifs), such as stars and loops.” Another aspect in this view
that E1 liked was the support of comparing detected motifs.
He mentioned that “It seems this [missing] link is critical
because it dramatically changes the cliques in the network.” He
further hovered over specific bi-cliques, mentioning that
“This clique is mainly overlapped with these old ones, so not much
new information is gained.” Thus, E1 was able to investigate
whether the effect of the selected missing links is significant
or not through comparing the bi-cliques. Moreover, E1 said
that the Motifs Overview was interesting and he never
thought about viewing network patterns in this way. After
some exploration, he added “Look here! This green dot (an
added motif) is far away from anybody including the red dots
(removed motifs). It means this new pattern is quite unique and
the links I just clicked are critical for this group of nodes.”

Fig. 6. Visualization of the bipartite network between crime types and
region clusters in Washington DC in 2017.

7.2 Interview Study II
The second expert (E2), a computer science postdoctoral
researcher, conducts research between geographical infor-
mation analysis and data visualization. He is interested in
developing geospatial analytical models and visual tools
for supporting decision making. The dataset used in his
interview was a bipartite network of crimes and locations
in Washington DC in 2017. The crimes are categorized by
the type of offense (e.g., robbery), method (e.g., knife), and
time of the day (e.g., evening), resulting in 49 different crime
incident categories. Moreover, the locations are grouped into
40 different clusters.

Investigating overall crime status. E2 was curious about
the correlations between different crimes and locations.
From the Network View of the dataset (Figure 6), he was
able to identify that some crimes are very rare, such as
burglary with guns during a day (C12), and some region
clusters have a much higher number of incidents such as
Cluster 2 (Columbia Heights, Mt. Pleasant, Pleasant Plains,
Park View) and Cluster 8 (Downtown, Chinatown, Penn
Quarters, Mt. Vernon, N. Capitol St.) [61]. Moreover, the
high-frequency crimes that occurred in these clusters were
theft related (C42-C48) which appeared in almost every
cluster. Based on the E2’s observation of the correlations,
the missing link prediction indicates potential crimes might
happen in certain clusters, and those with high probabilities
were in the aforementioned clusters (Q1). E2 commented
that “I like the ability of examining the prediction of multiple
algorithms at the same time, so I can do a more comprehensive
analysis and combine the results.” But he suggested that it
would be better to facilitate the algorithm comparison with
a side-by-side visualization, where currently he could only
open two windows in the browser to do so.

Discovering flaws in data processing. From his
exploration of the predicted missing links, E2 was surprised
that many of the link probabilities are relatively high, as
indicated by the many dark purple squares in Figure 6.
Based on his domain knowledge, E2 said that it cannot
be all true because of the geographical, demographic, and
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economical features of different neighborhoods in the city.
By digging into some of the local regions of the network
with MissBiN, E2 suspected that the above results might due
to the preprocessing of the dataset that classified the crime
incidents (Q2). He explained that “This coarse categorization
of the incidents results in less distinguishable connections in the
network which may confuse the [link prediction] algorithm.” He
further suggested that adding features with geographical
bias in this domain may generate better predictions.

8 USAGE SCENARIO

To demonstrate the usefulness of MissBiN, in this section,
we walk through a scenario of intelligence analysis with
The Sign of the Crescent [55] dataset. It contains 41 fictional
reports regarding three coordinated terrorist plots in the
US, of which 24 are relevant to the plot. Using name-entity
detection techniques, we extracted 284 unique entities and
495 relationships based on co-occurrence of the entities
in the same report. For this scenario, we analyze a
person-location bipartite network containing 49 persons and
104 locations as well as 328 connections between them,
which is the largest and most important bipartite network in
this dataset. Examining missing links in such an application
domain can be greatly helpful, because the information
is often incomplete in intelligence analysis. In order to
facilitate the analysis, we developed a simple Document
View on top of the MissBiN interface, which displays all
the related reports in the dataset based on user-selected
entities or relationships. The Document View also offers a
basic search function using keywords matching.

Suppose that Michelle is an intelligence officer, and she is
assigned to identify suspicious persons and activities from
these reports. She launches MissBiN and loads the person-
location bipartite network. The system automatically runs
the missing link prediction and displays the results. The key
steps of her analysis are shown in Figure 7.

First, Michelle adjusts the threshold to only show
predicted missing links with probability higher than 0.7,
because there are too many purple squares in the Network
View, which is a bit overwhelming. Among all the missing
links, M. Galab - Afghanistan has the highest probability
(Figure 7a). Thus, Michelle adds this potential link by
clicking it and re-computes the motifs and node metrics.
The Motifs Detail View then displays the removed, added,
and remained bi-cliques of the network. Of the eight newly
formed bi-cliques, a person named H. Pakes appears the
most frequently, which is in six bi-cliques (Figure 7b).

Navigating back to the Network View, she finds
that H. Pakes connects with many locations with high
probability. Michelle further sorts the nodes decreasingly
based on average missing link probability, and confirms this
observation since H. Pakes is ranked the second. But the first
person node has too few connections with the locations,
which seems an isolated node. Therefore, she focuses on H.
Pakes and reads a few reports regarding him. She then finds
that H. Pakes is a person carrying a forged Dutch passport,
who has been a member of the terrorist organization Al
Qaeda. The reports also reveal that H. Pakes was involved
in shipping explosive materials from Holland to the US.

After, Michelle shifts her focus to the location node The
Netherlands because H. Pakes has a fake Dutch passport.
She then identifies two more high-probability missing links
connecting The Netherlands with A. Ramaz and F. Goba,
ranked the fourth and the sixth respectively, as seen from
the Link List View (Figure 7c). Michelle adds these two
missing links and again re-computes the motifs and node
metrics with MissBiN. This time the system generates 17
new bi-cliques. With some exploration, Michelle identifies
that Charlottesville and Virginia are two frequent US locations
appearing in these bi-cliques (Figure 7d). Moreover, she
finds that the betweenness of H. Pakes increases significantly
after adding the two missing links, confirming that H. Pakes
is a very important person and the added links are critical.

Further reading in the reports related to the nodes
in the new bi-cliques reveals that M. Galab (appeared
in the missing link with highest probability, M. Galab -
Afghanistan, as mentioned earlier) is a participant of a
terrorist organization named HAMAS. Moreover, M. Galab
holds a valid student visa at the University of Virginia for
several years. Hence, Michelle decides to investigate the
location Charlottesville, and from the Network View she finds
that it has a high weight connection to Y. Mosed, which is
second highest except the link to M. Galab (Figure 7e). From
the reports, Y. Mosed is also a member of HAMAS and has a
valid student visa at the same university.

From the Link List View, Michelle discovers that a
particular person named F. Goba who appears frequently
in missing links with high probability. For example, its
connections to New York City, Amsterdam, and Queens are
ranked second, fifth, and seventh, respectively. She reads
the reports related to these locations and connects them with
the information obtained before, and then she hypothesizes
that F. Coba, M. Galab, and Y. Mosed followed the orders of A.
Ramaz, planed to attack a train to New York City with a bomb
made with the explosive materials shipped by H. Pakes.

Next, Michelle adds the missing links between F. Goba
and New York City, Amsterdam, and Queens, which results
in a lot of newly-formed and removed bi-cliques. Thus,
Michelle starts to use the Motifs Overview to explore them
(Figure 7f). One interesting pattern appears—a cluster of
four red dots close to a green dot, indicating that these (red)
bi-cliques are quite similar and may be merged together into
one new (green) bi-clique after adding a few missing links.

By exploring the new bi-clique in the Motifs Detail
View, Michelle finds two unseen names: B. Dhaliwal and C.
Webster. She further investigates these two people from the
reports and learns that B. Dhaliwal is also a fake name, who
served Taliban. More investigation can be continued to find
out if B. Dhaliwal is related to any planed terrorist activities
and the identified train attack.

9 DISCUSSION

While the previous studies have indicated the effectiveness
of MissBiN, there still exist limitations in the system as well
as the evaluation.

First, the missing link prediction process may be less
scalable for very large networks. The time complexity of
the standard link prediction algorithms is O(|X||Y |) for a
bipartite graph G = 〈X,Y,E〉. On top of this, we adjust
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Fig. 7. An officer is analyzing the intelligence reports of The Sign of the Crescent dataset using MissBiN.

the prediction scores with bi-cliques, and the worst-case
time complexity is O(2nn) with the MBEA algorithm [13],
where n = max(|X|, |Y |). Further development of the
bi-clique detection, such as approximation-based methods,
will increase the performance.

Second, while the visual interface of MissBiN offers
two main approaches to analyzing networks: metric-based
and motif-based, other views need to be developed
to support domain-specific tasks. For example, a map
of geographical locations is required by E2 to better
understand the context of data, and a Document View is
developed for the intelligence analysis scenario. However,
we strive to design a general visual analysis framework for
understanding missing links, and customized views can be
easily integrated for different tasks and applications. Also,
to facilitate the comparison of different algorithm results,
a juxtaposition view can be easily developed based on the
original Network View. Moreover, we focus on analyzing
nodes in the Metrics View, and metrics on edges can be
added easily to support more comprehensive analyses.

Third, while the matrix design in MissBiN is effective
in presenting larger and denser networks compared
to the node-link diagram [20], it is still an open
challenge to visualize extremely large networks. Multi-scale
visualizations equipped with aggregation, pre-computation,
and focus+context techniques [62], [63], [64] could be used
to enhance the scalability of the Network and Motif Views.

Fourth, although we interviewed experts from different
domains and provide a comprehensive usage scenario,
the evaluation of MissBiN can be enhanced. While
the effectiveness of the algorithm has been verified
with quantitative experiments, more evaluation such as
deployment studies and experiments needs to be conducted
to investigate how the tool can be used in real-world settings
as well as in other domains.

Although having limitations, MissBiN possesses several
key advantages, especially its generalizability for analyzing
missing links in any bipartite networks. Both the algorithm
and the visual interface do not depend on any domain- or
dataset-specific features. On the algorithm side, while we
adopt similarity-based methods as the basis, learning-based
methods can also be used before the re-weighting with
detected bi-cliques. While the structural hole theory that
inspired us is discovered in social science, it has become
an important foundation in many other fields such as
economics and computer science [9]. On the visual interface
side, the views are general for displaying both weighted and
unweighted networks. However, for unweighted networks,
the node-link diagram, which is easier to understand, could
be applied to the Motifs Detail View. Further, these views
are designed for not depending on any specific meta-data
attributes of the nodes or links in the networks. Additional
domain-specific views showing this information can be
easily integrated to support more complex tasks.
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10 CONCLUSION

We have presented MissBiN, a visual analysis tool for
exploring and understanding missing links in bipartite
networks. MissBiN offers a novel approach for missing
link prediction by using the information of bi-cliques
in networks. It can be integrated with a variety of
link prediction algorithms. Moreover, MissBiN provides
an interactive visualization to present computed missing
links and support the investigation of their meaning and
influence in the network by comparing networks with
and without selected missing links. In order to evaluate
MissBiN, quantitative experiments, expert interviews, and
a use case were conducted for assessing both the algorithm
and the visualization. Results indicated that our algorithm
outperforms the corresponding baselines, and MissBiN,
as an integrated system consisting of the algorithm
and interactive visualization, is useful for understanding
missing information in different applications.
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M. M. Sedlmair, J. Chen, T. Möller, and J. Stasko, http://www.
vispubdata.org/site/vispubdata/, 2018.

[57] J. Davis and M. Goadrich, “The relationship between precision-
recall and roc curves,” in Proceedings of the 23rd International
Conference on Machine Learning, 2006, pp. 233–240.

[58] N. H. Riche, B. Lee, and C. Plaisant, “Understanding interactive
legends: a comparative evaluation with standard widgets,”
Computer Graphics Forum, vol. 29, no. 3, pp. 1193–1202, 2010.

[59] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “A taxonomy and
survey of dynamic graph visualization,” Computer Graphics Forum,
vol. 36, no. 1, pp. 133–159, 2016.

[60] W. S. Torgerson, “Multidimensional scaling: I. theory and
method,” Psychometrika, vol. 17, no. 4, pp. 401–419, 1952.

[61] Washington DC Neighborhood Clusters, https://www.
neighborhoodinfodc.org/nclusters/nclusters.html, 2018.

[62] Y. Hu and L. Shi, “Visualizing large graphs,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 7, no. 2, pp. 115–136, 2015.

[63] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for real-
time exploration of spatiotemporal datasets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456–2465,
2013.

[64] J. Abello, J. Korn, and M. Kreuseler, “Navigating giga-graphs,” in
Proceedings of the Working Conference on Advanced Visual Interfaces,
2002.

Jian Zhao is an assistant professor with
the School of Computer Science, University
of Waterloo. His research interests include
Information Visualization, Human-Computer In-
teraction, Visual Analytics and Data Science.
His work contributes to the development of
advanced interactive visualizations that promote
the interplay of human, machine, and data.

Maoyuan Sun is an assistant professor with
the Department of Computer Science, Northern
Illinois University. His research falls in areas
of visual analytics, information visualization,
and human computer interaction, with applied
domains in intelligence analysis, business intelli-
gence, cyber security, and STEM education.

Fraincine Chen is a principal research scientist at FXPAL. Her
research interests are in applied machine learning, with a focus around
developing methods for extracting, organizing and helping users to make
better use of information in different types of media, including text,
images, video, audio and imaged text.

Patrick Chiu is a principal research scientist at FXPAL. His current
research interests include multimedia applications and content analysis,
human-computer interaction, and ubiquitous computing.

http://www.vispubdata.org/site/vispubdata/
http://www.vispubdata.org/site/vispubdata/
https://www.neighborhoodinfodc.org/nclusters/nclusters.html
https://www.neighborhoodinfodc.org/nclusters/nclusters.html

	Introduction
	Related Work
	Bipartite Network Analysis
	Bipartite Network Visualization
	Missing Link Prediction Algorithms

	System Design and Overview
	Missing Link Prediction of MissBiN
	Problem Definition
	Status Quo Similarity-Based Link Prediction
	Novel Enhancement with Bi-Clique Information

	Evaluation of Missing Link Prediction
	Experimental Datasets
	Experimental Setup
	Results

	Visual Interface of MissBiN
	Visual Exploration of Missing Links
	Visual Analysis of Network Motifs
	Examination of Node Metrics

	Initial Expert Feedback
	Interview Study I
	Interview Study II

	Usage Scenario
	Discussion
	Conclusion
	References
	Biographies
	Jian Zhao
	Maoyuan Sun
	Fraincine Chen
	Patrick Chiu


