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ABSTRACT

The analysis of bipartite networks is critical in a variety of
application domains, such as exploring entity co-occurrences
in intelligence analysis and investigating gene expression in
bio-informatics. One important task is missing link prediction,
which infers the existence of unseen links based on currently
observed ones. In this paper, we propose MissBiN that involves
analysts in the loop for making sense of link prediction results.
MissBiN combines a novel method for link prediction and an
interactive visualization for examining and understanding the
algorithm outputs. Further, we conducted quantitative experiments
to assess the performance of the proposed link prediction algorithm
and a case study to evaluate the overall effectiveness of MissBiN.
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1 INTRODUCTION

Many real-world systems can be modeled as bipartite networks (i.e.,
two-mode networks). There are two types of nodes in a network and
links only exist between different node types. Bipartite relationship
analysis has been applied in a variety of application domains, such
as studying political leanings with voter-vote networks [5] and
investigating gene-expression networks in bioinformatics [23].

One important network analysis task is link prediction (i.e.,
detecting missing links), which infers the existence of implicit
relationships between nodes based on currently observed links [21].
Link prediction is extremely useful in practice because real-world
data is often noisy or incomplete; for example, guiding biological
experiments in checking protein interaction networks [4].

In practice, analysts need to leverage their domain knowledge to
examine algorithmic results. This is because the algorithm output
is usually a list of scores or probabilities, which may be difficult
to interpret. Moreover, these results can be inaccurate. They may
ask: why is this link identified as missing with a high score, does it
make sense to have a link between these two nodes, and how will the
network change by adding one or several missing links? However,
there still is a lack of effective tools to allow analysts to browse the
results and explore answers to these questions.

To address these issues, we propose MissBiN, a visual analysis
tool for detecting and examining missing links in bipartite networks.
First, we contribute a novel link prediction approach that leverages
the information of bi-cliques, inspired by structural hole theory in
social science [3]. The method can be applied with any existing
algorithm (e.g., neighbor-based techniques [24]), to both weighted
and unweighted networks. Second, we develop an interactive
visualization to present detected missing links, allowing for a
better understanding of the missing links and their impact. The
visualization enables analysts to compare networks with and without
specific links interactively added by analysts. To evaluate MissBiN,
we conducted quantitative experiments on real-world datasets and an
in-depth case study of analyzing entity relationships in documents.
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2 BACKGROUND

2.1 Bipartite Network Analysis
One of the key computational approaches for analyzing a general
network (i.e., containing only one type of node) is to calculate the
node centrality indices (e.g., betweenness and closeness), which
characterizes the importance of a node [2]. These metrics are also
applicable for bipartite networks [1]. In addition, any methods for
general network analysis can be employed on a projected bipartite
network [1], but some information may be lost. Another branch of
techniques is to identify special groups of nodes, such as motifs (e.g.,
chain, star, and clique), clusters, and communities. Due to particular
properties of bipartite networks, the motif-based analysis mainly
focuses on extracting bi-cliques [40]. Also, biclustering techniques
(e.g., [18]) can be applied to simultaneously group two types of
nodes, relaxing the criteria of bi-cliques.

Without losing generality, MissBiN supports visual analysis of
bipartite networks based on the above two common approaches:
metric-based and motif-based. Specifically, MissBiN allows analysts
to interactively investigating the influence of particular missing links.

2.2 Missing Link Prediction Algorithms
Common link prediction algorithms roughly fall into two major
categories: learning-based and similarity-based [24, 35]. The
learning-based methods usually treat link prediction as a binary
classification problem and train a machine learning model to
predict the class label (i.e., positive for potential linking) for
each non-connected node pair. These methods often leverage
features extrated from node attributes and structures [22, 27,
36], or probabilistic graph models [11, 39]. These techniques,
although effective, are less general, often requiring additional
information (e.g., semantic node attributes) of networks. The
similarity-based methods attempt to compute a similarity score for
every non-connected pair of nodes and rank all these potential links.
The similarity metrics can be computed with random-walk based
simulation and neighbor-based measures such as the Adamic-Adar
coefficient [24, 35]. Researchers have also extended some of the
similarity metrics to the bipartite network scenario [6, 37].

We move one step further by integrating important structural
information in bipartite networks [3], on top of the link prediction
scores generated by existing common approaches. We adopt the
similarity-based approach, because the learning-based approach
requires dataset-specific information (e.g., node attributes) for
training. But our approach can be used with any link prediction
algorithms that produce a list of missing link probabilities.

2.3 Bipartite Network Visualization
Similar to visualizing general networks, two main approaches of
presenting bipartite networks are: node-link diagrams and matrices.
Node-link diagrams are easier to understand and emphasize entities
(i.e., nodes), but suffer from increased visual clutters for larger and
denser networks [17]. Matrices emphasize relationships (i.e., links)
and are more scalable in many network analysis tasks [9].

Jigsaw’s List View [29] is a typical example based on node-link
diagrams, organizing different types of nodes in separate lists.
Variations of this design include Focus+Context lists [28], edge
bundling lists [32], employing nested layouts with duplicated nodes
but no links [25]. BiSet [31] shows bi-cliques between two lists
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of nodes and uses link bundling. Radial layout of nodes has also
been applied [7]. Second, bipartite networks can be shown as a
bi-adjacency matrix, where rows and columns represent two different
types of nodes. Example systems include BiVoc [10], Bicluster
viewer [12], Expression Profiler [16], and BicOverlapper 2.0 [26].
An exception is BiDots [41] which organizes bi-cliques in rows to
emphasize patterns and places nodes in columns. Hybrid techniques
have been proposed to combine the advantages of node-link
diagrams and matrices. For example, based on NodeTrix [13], Furby
[30] and Bixplorer [8] display each bi-clique as an individual matrix
and connect them with links. Xu et al. [38] applied a similar method
for the projected bipartite network. Further, Matchmaker [20] and
VisBricks [19] augment this visual representation with extensive
charts (e.g., heatmaps and parallel coordinates) to display bi-cliques.

While some visual design of MissBiN is inspired by the above
systems, none of them has addressed the problems of detecting and
visualizing missing links. Particularly, we employ a matrix-based
design because links are the focus in our analysis scenarios.

3 MISSING LINK PREDICTION OF MISSBIN
3.1 Problem Definition and Node Similarity
A bipartite network can be formally defined as G = 〈X ,Y,E〉, where
X and Y are two non-overlapping sets of nodes and E is the set of
links that only exist between X and Y , i.e., e = 〈x,y〉 ∈ E where
x ∈ X and y ∈ Y . For a bipartite network, the number of all possible
links is |X | · |Y | and we denote this set of links as U .

A link prediction problem is to identify which links are
likely missing in the set U − E. As discussed in Section 2.2,
similarity-based methods first compute the similarity score of every
non-connected pair of nodes, and then generate a ranked list of
missing links with decreasing scores for prediction. These types of
methods are more generic because they purely rely on the network
topology and are not biased to particular datasets. Thus, we adopt
this for development and experiments, but our approach can be used
with any link prediction methods that generate link probabilities.

One way to compute the node similarity is via a random walk,
and here we employ random walk with restart (RWR) [33]. To
accommodate bipartite networks, we let the random walker run for
an odd number of iterations, such that it always stops at nodes in the
other set. Since this measure is not symmetric, we use the average
of random walk scores from node x to node y and the opposite.

Another way of measuring similarity is based on comparing
the neighborhoods of two nodes. The intuition is that the more
similar the topology of two neighborhoods are, the more likely the
link connecting the two nodes is missing. For a bipartite network,
neighbors of two possible connected nodes must be different.
Following the ideas in [6, 37], we define the one-hop neighbors
of a node x in a bipartite network as Γ(x), and we further define γ(x)
as the set of the two-hop links of a node x. That is, γ(x) = {〈xi,y〉 ∈
E : xi 6= x,y ∈ Γ(x)}. For example, in Figure 1a, Γ(x4) = {y3,y4}
and γ(x4) = {〈x1,y3〉,〈x5,y3〉,〈x1,y4〉,〈x2,y4〉,〈x3,y4〉}. A number
of similarity metrics can be applied to compare the neighbor context
of two nodes, γ(x) and γ(y), such as:

common neighbors: sxy = |γ(x)∩ γ(y)|;
Jaccard coefficient: sxy =

|γ(x)∩γ(y)|
|γ(x)∪γ(y)| ;

Adamic-Adar coefficient: sxy = ∑<m,n>∈γ(x)∩γ(y)
1

log |Γ(m)|·|Γ(n)| ;
and preferential attachment: sxy = |γ(x)| · |γ(y)|.

3.2 Enhancement based on Bi-Clique Information
Based on the above methods, we propose to integrate a key structure
in bipartite networks, maximal bi-cliques, for link prediction.
Formally, a maximal bi-clique is defined as a sub-network, G′ =
〈X ′,Y ′,E ′〉, where X ′ ⊆ X , Y ′ ⊆ Y , and E ′ ⊆ E, and there exists a
link e = 〈x,y〉 ∈ E ′ between every pair of nodes, x ∈ X ′ and y ∈ Y ′.
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Figure 1: a) An example bipartite network G = 〈X ,Y,E〉. b) An
illustration of two overlapped bi-cliques, Ci = 〈Xi,Yi,Ei〉 and C j =
〈X j,Yj,E j〉; each of them is shown as a bi-adjacency matrix.

Algorithm 1: Missing link weighting based on bi-cliques.
Data: A list of bi-cliques, L = {Ci = 〈Xi,Yi,Ei〉}, detected in a bipartite network

G = 〈X ,Y,E〉.
Result: Scores, w, for all non-observed (missing) links in G.
foreach e ∈U−E,U = {∀〈x,y〉;x ∈ X ,y ∈ Y} do

we← 0;
foreach bi-clique pair (Ci,C j) from L do

o← |Xi∩X j |·|Yi∩Yj |
|Xi∪Xj |·|Yi∪Yj |

;

if o < θ then
continue;

foreach e ∈ {∀〈x,y〉;x ∈ (Xi−X j)∪ (X j−Xi),y ∈ (Yj−Yi)∪ (Yj−Yi)} do
we← we +

|Xi∩Xj |·|Yi∩Yj |
|Xi−Xj |·|Yj−Yi |+|Xj−Xi |·|Yi−Yj |

;

Our intuition is that missing links connecting nodes from different
bi-cliques to form a larger bi-clique should carry more weight. This
is inspired by the structural hole theory in social science [3]. That
is, a person tends to know what other people in the same community
know, and the most beneficial connections come from the weak ties
that link people from different communities. Also, the literature
indicates that it is useful in bipartite network analysis [37]. However,
their method cannot fit generally with any node similarity metric.

As is shown in Figure 1b, consider two bi-cliques as two
communities that have some nodes in common; each missing
link between the non-overlapping nodes (i.e., M4) from the two
communities contributes to the formation of a bigger community
that benefits all the nodes. If the two communities have many nodes
in common, each of the few missing links that can be added carries
more value, as a bigger bi-clique can be formed fairly easily. On the
other hand, if the two communities have less in common, then more
links need to be added to merge the two bi-cliques into a larger one,
and each of the missing links carries less value.

Following this intuition, we develop an algorithm to re-rank the
missing link list with scores s(x,y) generated by the above similarity-
based methods. As shown in Algorithm 1, it computes scores, we, for
all missing links (e.g., M4 in Figure 1b) based on detected bi-cliques.
When processing each pair of bi-cliques, we is updated with a value
determined by the size of two bi-cliques and their overlap. Intuitively,
in Figure 1b, the value computed in each iteration corresponds to
the area of the intersection M1 divided by the area of the missing
part M4. We only consider bi-clique pairs with overlap larger than
a ratio θ to avoid overly biasing towards non-related bi-cliques.
Then, we normalize the scores by the maximum value and generate
a new ranked list of predicted missing links with the new scores:
s′(x,y) = w(x,y) · s(x,y).

4 VISUAL INTERFACE OF MISSBIN
Algorithms are not always perfect in real-world usage, so some
detected missing links may not be meaningful. We design a visual
interface of MissBiN (Figure 2) allowing analysts to better make
sense of predicted missing links.

4.1 Visual Exploration of Missing Links
MissBiN supports the visual exploration of predicted missing links
through two views. First, the Network View (Figure 2a) displays
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Figure 2: The visual interface of MissBiN: a) Network View, b) Link List View, c) Motifs Detail View, d) Motifs Overview, and e) Metrics View.

the bi-adjacency matrix of a bipartite network, where the row and
the column represent two different types of nodes respectively. The
links are represented as squares in the intersections of rows and
columns. The existing links in the network are shown in a yellow-
green colorscale, reflecting the link weight. The predicted links are
displayed in a white-purple colorscale with darker color indicating
higher score. Second, the Link List View (Figure 2b) shows the
computed missing links linearly by prediction score. A number of
user interactions are offered, such as reordering rows and columns
of the matrix as well as filtering based on the score.

These two views offer an overview of the bipartite network and
the performance of the missing link prediction. We choose the
matrix-based design for the Network View because our focus is
links; matrices utilize much visual space for encoding links and
are more scalable for denser networks [9, 17]. Moreover, the color
channel cannot precisely reflect the scores and ranks of the missing
links, we design the Link List View to augment the Network View
for exploring the link prediction. An analyst can further explore the
results and hypothetically add certain missing links to examine their
influence with visual analysis of motifs and metrics (as described
later). The added links are marked as black crosses on the matrix
and also displayed at the top of the list (Figure 2a & b).

4.2 Visual Analysis of Network Motifs and Node Metrics
Motif analysis is one key approach to understanding the topology
of a network. MissBiN provides a Detail View (Figure 2c) and an
Overview (Figure 2d) for browsing the motifs at different scales. In
the Motifs Detail View, bi-cliques are displayed as small multiples of
matrices in similar visual encodings to the Network View (Figure 2a).
We employ a similar matrix-based design as the Network View
because a bi-clique is essentially a portion of the bi-adjacency matrix
of the entire network, keeping visual consistency. Usually many
bi-cliques can be identified in a network, and a lot of them have
overlapping nodes and links. To reveal their relationships, we deisgn

the Motifs Overview that displays all the bi-cliques as dots in a 2D
space based on MDS, and thus distance reflects bi-clique similarity.

These two views not only support the visual exploration of
bi-cliques, but also the investigation of the impact when certain
missing links are added, answering “what if” questions. To support
comparing two sets of bi-cliques from the networks with and
without added links by an analyst, the Motifs Detail View organizes
bi-cliques in three columns: removed (due to merging) bi-cliques
in red, newly-added ones in green, and unchanged ones in gray,
compared to the bi-clique set of the original network. Similarly,
the Motifs Overview encodes these bi-cliques in the same colors,
also revealing bi-clique clusters and changing trends. Although we
currently only allow for one type of motif (i.e., bi-clique), other
forms of motif analysis can be supported with a similar design.

Computing node-metrics is another important way of learning a
big picture of network characteristics quantitatively. The Metrics
View (Figure 2e) supports this type of analysis by presenting a
number of metrics in an interactive tabular view: degree, closeness,
and betweenness centralities of before and after adding certain
missing links, etc. Changes of metric values are highlighted in
red, revealing the effect of added links.

5 EVALUATION OF MISSING LINK PREDICTION

5.1 Experimental Datasets
We used two real-world datasets to conduct experiments for testing
our algorithm. The first is a person-place network extracted from
the Atlantic Storm corpus containing 111 intelligence reports [15].
We identified 207 person nodes, 165 place nodes, and 1,718
links between them, from these reports. The second dataset is a
weighted user-conversation bipartite network detected from Slack
communication messages of a group within an IT company. The
weight of a link is based on the number of words that a user
contributed to a conversation. The resulting bipartite network
contains 41 users, 61 conversations, and 258 links.
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Figure 3: Analyzing The Sign of the Crescent using MissBiN.

5.2 Experimental Setup and Results
Because there is no ground truth for missing links, we followed a
commonly used method [37]: randomly remove a certain number of
links from an original network, apply the link prediction algorithms
on this new network, and measure the performance by comparing
the predicted links with the removed links (i.e., the ground truth).
We evaluated our bi-clique oriented link prediction approach by
comparing it with five corresponding baseline algorithms, including
common neighbors (CN), Jaccard coefficient (JA), Adamic-Adar
coefficient (AA), preferential attachment (PA), and random walk
(RW) [24, 35]. For each algorithm, we randomly removed 1%, 2%,
5%, 10%, and 15% of links. For each condition, we performed the
experiment five times to reduce sampling bias.

We used two metrics to measure the performance of the
algorithms: R-Precision (the ratio between all the relevant items
retrieved until the rank that equals the number of relevant items in
the collection), and AUC PR (the area under the precision-recall
curve). Table 1 shows the average performance of each condition.
Based on the results, we can observe that the bi-clique oriented
methods enhance the baselines in all the conditions with different
levels of improvement on both metrics. Some of the performance
gain is substantial, where the maximum improvement appears with
the PA condition of the Atlantic Storm dataset.

6 CASE STUDY

To demonstrate the usefulness of MissBiN, in this section, we walk
through a case study of investigative analysis with The Sign of the
Crescent [15] dataset. It contains 41 fictional reports regarding three
coordinated terrorist plots in the US, of which 24 are relevant to the
plot. Using name-entity detection techniques, we analyze a person-
location bipartite network containing 49 persons and 104 locations
as well as 328 connections between them. Examining missing links
in such an analysis can be greatly helpful, because the information is

often incomplete. We developed a simple Document View on top of
the MissBiN interface, which displays all the related reports based
on user-selected entities or relationships. Our analyst’s task is to
identify suspicious persons and activities from these reports. She
launches MissBiN, which visualizes the person-location bipartite
network (Figure 2). First, she adjusts the threshold to only show
predicted missing links with probability higher than 0.7, because
there are too many purple squares in the Network View, which
is a bit overwhelming. Among all the missing links, M. Galab -
Afghanistan has the highest probability (Figure 2b). She thus adds
this potential link by clicking it and re-computes the motifs and
node metrics. The Motifs Detail View then displays the removed,
added, and unchanged bi-cliques of the network. Of the eight newly
formed bi-cliques, a person named H. Pakes appears the most, which
is in six bi-cliques (Figure 2c). Navigating back to the Network
View, she finds that H. Pakes connects with many locations with high
probability. She further sorts the nodes in decreasing order based
on average missing link probability, and confirms this observation
since H. Pakes is ranked the second (Figure 3a). The first person
node has too few connections with the locations, which seems an
isolated node. Thus, she focuses on H. Pakes and reads a few reports
regarding him. She then finds that H. Pakes is a person carrying a
forged Dutch passport and his actual given name is Abu al Masri, a
member of the terrorist organization Al Qaeda. The reports reveal
that H. Pakes was involved in shipping explosive materials from
Holland to the US.

From the Link List View, she discovers that a particular person
named F. Goba appears frequently in missing links with high
probability (Figure 3b). For example, its connections to New York
City, Amsterdam, and Queens are ranked second, fifth, and seventh,
respectively. She reads the reports related to these locations and
connects them with the information obtained before. She finds that F.
Goba was involved in attacking a train to New York City with a bomb
made with the explosive materials shipped by H. Pakes. Next,
she adds the missing links between F. Goba and New York City,
Amsterdam, and Queens, which results in a lot of newly-formed
and removed bi-cliques. Then, she uses the Motifs Overview to
explore them (Figure 3c). One interesting pattern catches her eyes: a
cluster of four red dots close to a green dot, indicating that these (red)
bi-cliques are quite similar and may be merged together into one new
(green) bi-clique after adding a few missing links. By exploring
the new bi-clique in the Motifs Detail View (Figure 3d), she finds
two names: B. Dhaliwal and C. Webster. She further investigates
these two people from the reports and learns that B. Dhaliwal is
also a fake name, who carries an Indian passport, and his actual
name is S. Aloakri, a Pakistani who served Taliban in Afghanistan.
More investigation of the reports reveals that B. Dhaliwal was likely
related to the previously identified train attack.

7 CONCLUSION AND FUTURE WORK

We have presented MissBiN, a visual analysis tool for exploring and
understanding missing links in bipartite networks. It offers a novel
approach for missing link prediction by using the information of
bi-cliques in networks. Moreover, MissBiN provides an interactive
visualization to present computed missing links and support the
investigation of their meaning and influence by comparing networks
with and without selected missing links. Quantitative experimental
results and a case study indicate promising applications of MissBiN
in practice. However, more evaluation such as deployment studies
needs to be conducted to investigate its usage in real-world settings
and in other domains. Also, we plan to extend the scalability of both
the algorithm and visualization of MissBiN. We want to employ
faster, but approximated, bi-clique detection algorithms [40], and
enhance the matrix view for large networks with multi-scale [34]
and focus+context techniques [14].
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