
KTabulator: Interactive Ad hoc Table Creation
using Knowledge Graphs

Siyuan Xia
University of Waterloo

Waterloo, ON
s9xia@uwaterloo.ca

Nafisa Anzum
University of Waterloo

Waterloo, ON
nanzum@uwaterloo.ca

Semih Salihoglu
University of Waterloo

Waterloo, ON
semih.salihoglu@uwaterloo.ca

Jian Zhao
University of Waterloo

Waterloo, ON
jianzhao@uwaterloo.ca

W
ik

ip
ed

ia
DB

pe
di

a

...

table union/join

tabularizing data
predicate recommendation

a b

c

Figure 1: KTabulator: an interactive system to help users effectively extract, build, or extend ad hoc tables from large corpora
(e.g.,Wikipedia), by leveraging their computerized structures in the form of knowledge graphs (e.g., DBpedia). KTabulator sup-
ports effective information seeking by extracting and suggesting relevant entities, properties, and tables. The main Interface
of KTabulator consists of: (a) Table Panel showing the current state of the table being created, (b) Data Action Panel containing
two tabs where users can insert data from DBPedia or tables in Wikipedia, and (c) Wikipedia Panel allowing users to browse
the Wikipedia pages of selected entities in the table.

ABSTRACT
The need to find or construct tables arises routinely to accomplish
many tasks in everyday life, as a table is a common format for
organizing data. However, when relevant data is found on the web,
it is often scattered across multiple tables on different web pages,
requiring tedious manual searching and copy-pasting to collect data.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445227

We propose KTabulator, an interactive system to effectively extract,
build, or extend ad hoc tables from large corpora, by leveraging
their computerized structures in the form of knowledge graphs.
We developed and evaluated KTabulator using Wikipedia and its
knowledge graph DBpedia as our testbed. Starting from an entity or
an existing table, KTabulator allows users to extend their tables by
finding relevant entities, their properties, and other relevant tables,
while providing meaningful suggestions and guidance. The results
of a user study indicate the usefulness and efficiency of KTabulator
in ad hoc table creation.

CCS CONCEPTS
• Information systems→ Information integration; •Human-
centered computing → Interactive systems and tools.

Author manuscript, published in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 100:1-100:14, 2021.
DOI: 10.1145/3411764.3445227

http://dx.doi.org/10.1145/3411764.3445227

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

KEYWORDS
Data tables, data cleaning, data integration, database, user interface
ACM Reference Format:
Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao. 2021. KTab-
ulator: Interactive Ad hoc Table Creation using Knowledge Graphs. In
CHI Conference on Human Factors in Computing Systems (CHI ’21), May
8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3411764.3445227

1 INTRODUCTION
A table is a natural and commonly used data format to organize
and share data that captures facts about sets of entities and their
properties. Once data is in a tabular format, using simple operations
such as filtering, sorting, or aggregating columns, humans can
explore and analyze it very efficiently. The need to find or construct
tables arises routinely to accomplish many tasks in every day life.
Consider searching for books that were recently written by Asian
developmental economists, a student seeking information about
public engineering universities across provinces, or a basketball
enthusiast analyzing past draft picks of NBA teams, among many
other examples. Many of these tasks are highly varied and ad hoc,
which makes it very challenging for people to find readily-available
tables on the web that directly satisfy their needs. When relevant
tables are found, they are often incomplete and existing systems
do not provide an easy way to complete the missing information
according to the needs of users. As a result, preparing the tables
can be a tedious task, requiring manual copy-pasting from browsed
information, or searching for related tables that can be unioned or
joined with existing ones using a spreadsheet software.

At the same time, obtaining specific information about individ-
ual entities on the web has become easier over time. There is vast
unstructured textual information on the web, such as in online
encyclopedia, news websites, and academic articles. They include
factual information on a wide range of entities, such as politicians
and celebrities, entertainment productions and events, and geo-
graphical or scientific entities. The information in some of these
corpora have lately been computerized as structured information
in the form of knowledge graphs. Perhaps the most popular of these,
such as DBpedia [11], YAGO [43], Wikidata [48], and Freebase [14],
have been constructed by computerizing online encyclopedia, such
asWikipedia [7] or Baidu Baike [5]. Data in these knowledge graphs
are stored in some graph-structured data model, often as a set of Re-
source Description Framework (RDF) triples [1], which makes it suit-
able for being processed by software. These triples have facilitated
several applications, such as question answering in search engines:
e.g., the answer to the questionWho is the director of The Dark Night?
can be encoded and found in the triple: (dbr:The_Dark_Knight,
dbo:director, dbr:Christopher_Nolan) [2] in DBpedia.

In this paper, we aim to help users efficiently create ad hoc tables
they need by leveraging a knowledge graph. We contribute an in-
teractive and exploratory data gathering system called KTabulator
(Figure 1) that uses Wikipedia and its associated knowledge graph
DBpedia as a test-bed for this purpose. In contrast to existing appli-
cations in which a software, such as a search engine, processes a
knowledge graph, KTabulator puts the power of knowledge graphs
directly into the hands of humans. That is, in a human-in-the-loop

manner, users start creating tables from an entity or a pre-existing
table in a Wikipedia article and interactively transform these tables
by: (i) adding sets of related entities as new rows; or (ii) adding
new properties of existing entities in these tables in new columns.
Similar to the initial step, additional entities and properties can be
extracted directly from DBpedia as well as pre-existing tables in
the Wikipedia articles.

KTabulator primarily aims to empower non-technical users by
streamlining iterative (1) data gathering, and (2) table transforma-
tion steps when creating ad hoc tables. KTabulator’s main interface
is designed to be familiar to users who are creating tables and sup-
port column and row additions and guide them as they explore and
gather possibly sparse, heterogeneous and inconsistent data from
both DBpedia and Wikipedia tables. Specifically, we have adopted
a familiar spreadsheet interface to support table creation opera-
tions. To provide guidance for data exploration, KTabulator keeps a
mapping from each entity in the created table to the corresponding
nodes in DBpedia. The neighborhoods of these nodes are used in
several ways to guide the user in selecting further transformations.
For example, if a column contains a set of movies, users can add
existing properties of the nodes in DBpedia that correspond to
these movies, such as runtimes, release dates, or directors as new
columns. Similarly, if a user populates a new director column, the
system uses the DBpedia ontology to understand that directors
are persons (dbo:Person) and suggests other properties of movies
that are persons, such as writers or cinematographers. The system
also explores Wikipedia pages of these neighbors to search for pre-
existing Wikipedia tables that the user might union or join with
their tables. To address the sparsity and inconsistencies in the data
in DBPedia and Wikipedia tables, KTabulator allows heterogeneity
in the sets of entities and properties that are added to users’ tables.

There exist classes of systems that partially provide KTabulator’s
functionalities. As users interact with KTabulator and gather data
from DBPedia, it automatically generates SPARQL queries. Similar
functionality is provided by systems that aim to make it easier
for users to query and explore knowledge graphs through interac-
tive query building or natural question answering [10, 21, 47, 54].
Similarly, KTabulator provides interactive table transformation op-
erations that are provided by spreadsheets and systems for data
cleaning and transformation [3, 9, 28, 32, 37]. KTabulator brings to-
gether functions from these different classes of systems as a solution
to address the problem of ad-hoc table creation.

To validate KTabulator, we conducted a user study with 12 par-
ticipants on table creation tasks, including a definitive task with a
target table and a exploratory task around a predetermined topic.
We report our findings in quantitative task performance, subjec-
tive questionnaire ratings, and qualitative feedback. Participants
appreciated the capabilities of KTabulator in efficiently adding rows
or columns directly extracted from Wikipedia/DBpedia, with the
the help of system automation as well as suitable guidance and
suggestions. The results also indicate that KTabulator is effective
and useful for supporting ad hoc table creation in a human-in-
the-loop approach, which allows participants to easily collect the
information they needed.

KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs CHI ’21, May 8–13, 2021, Yokohama, Japan

2 BACKGROUND
We provide a brief background on DBpedia, knowledge graphs,
RDF, and SPARQL and refer the readers to references [1, 4, 6, 11],
for more details on these technologies. DBpedia is a knowledge
graph, i.e., a set of RDF triples, that are extracted from Wikipedia
pages [11]. Each RDF triple is of the form (subject, predicate, object)
and expresses a fact about an entity or a property of an entity that is
covered in Wikipedia. Subjects, predicates, and objects are uniquely
identified with universal resource identifiers (URIs). For example in
DBpedia, the URI http://dbpedia.org/resource/The_Dark_Knight,
abbreviated as dbr:The_Dark_Knight, identifies the movie The
Dark Knight. There are two types of triples in DBpedia:
• Ontological triples: These express the metadata (or schema in-

formation) about entities. These include triples with predicates
rdfs:domain, rdfs:range, rdf:type, rdfs:subPropertyOf,
and rdfs:subClassOf, among others. For example, (dbo:director,
rdfs:range, dbo:Person) indicates that directors should be of
type dbo:Person. KTabulator uses ontological triples in its rec-
ommendation algorithms that suggest relevant data to users.

• Assertion triples: These are the remaining triples that assert facts
about entities, such as (dbr:The_Dark_Knight, dbo:director,
dbr:Christopher_Nolan). Users gather and tabulate these as-
sertion triples to construct tables.

When subjects and objects are viewed as nodes, triples can be seen
as labeled edges, and one can view a set of triples as forming a
graph (hence the term knowledge graph). The ontological subset
of knowledge graphs is sometimes referred to as an ontology.

The standard query language to query data that is stored as a set
of RDF triples is SPARQL [4]. SPARQL is a declarative query lan-
guage that is similar in structure to SQL, and consists of a WHERE
clause (corresponding to FROM in SQL) that expresses joins in the
form of graph patterns, a FILTER clause (corresponding to WHERE
in SQL) to express predicates over the matched patterns, and a
SELECT clause, as in SQL, to return a set of matched variables that
were used in the WHERE clause. For example, the following “star”
query:
SELECT ? a
WHERE ? a r d f : d i r e c t o r dbr : Chr i s topher_No lan ,

? a d c t : s u b j e c t dbc : c r i m e _ t h r i l l e r
returns all nodes that have an rdf:director edge pointing to
dbr:Christopher_Nolan and another dct:subject edge pointing
to dbc:crime_thriller, which visually forms a star shape.

3 RELATEDWORK
There has been several work on designing interfaces and tools for
various applications that use knowledge graphs and other semantic
web technologies, such as RDF and SPARQL, that focus on various
topics related to human-computer interactions, such as efficient
ways of visualizing, browsing, or searching in knowledge graphs
or authoring ontologies to increase humans’ accessibility to these
technologies. We refer the reader to reference [18] for a good survey
of the papers that cover HCI-related topics. Below, we cover several
of the work that are closer to our work.

Smart Assistance in Spreadsheets: Closest to our work is the
SmartTable [50] spreadsheet system which suggests new rows and

column headers in a spreadsheet application. This work assumes
a setting where a user is manually creating a table cell by cell in
a spreadsheet application and is in the middle of entering a new
cell. Similar to an auto-completion system, SmartTable ranks a
list of candidate values for the cells or new column headers. The
algorithms for suggesting a cell value or column headers are based
on an earlier work by the same authors [51]. These algorithms take
as input the cell values, table caption, and column headers the user
has entered into the spreadsheet and use data from DBpedia and
Wikipedia tables to suggest either the cell value or column header
the user is about to edit. In contrast, KTabulator assumes a different
setting in which users insert sets of entities or their properties and
entire columns instead of individual cells. For example, KTabulator
supports adding sets of entities that satisfy a set of properties from
DBpedia or unioning users table with other tables, which avoids
moving from cell to cell to populate tables. Similar to SmartTables,
KTabulator also supports finding relevant data from DBpedia, but it
is designed for users to directly browse, explore, and query DBpedia
and Wikipedia. Instead, SmartTables allows an interaction with
DBpedia and Wikipedia data only through suggestions.

Systems for Data Extraction and Simplifying Querying:
There are several query building systems to simplify querying
of databases that store knowledge graphs. We can divide these
systems into two broad categories: i) direct database querying sys-
tems; and ii) question answering systems. Systems for database
querying provide interactive frameworks to define a query using
visual illustrations. These systems expose the database structure
and schema to the users and enable users to browse the schema
and interactively formulate queries [21, 26, 41, 42, 47]. For example,
Sparklis [21] allows users to formulate queries of DBPedia using
faceted search where users interactively click drop down menus
and text boxes to formulate queries, which are also shown in a nat-
ural language. The results of queries are then presented in several
formats such as flat or nested tables. On the other hand, question
answering tools translate questions posed in natural language to
SPARQL to retrieve results from a knowledge graph [8, 10, 17, 54].
All of these tools help non-tech users to extract data from knowl-
edge bases. As such they can provide part of the data gathering
functionality of KTabulator. However, these systems do not provide
functionality to interactively expand, union, and join query results
in iterations. Instead they assume that the query or question results
that are returned, even if they are in a table format, are final and
further query or question results override previous results. Users in
KTabulator instead iteratively build tables that can contain results
of multiple queries.

Data Visualization Using Knowledge Graphs: ViDAX [20],
LinkDaViz [45], and Filter Dials [22] are systems that are designed
for users to visualize the data in knowledge graphs in aggregate
using different visualizations. Similar to our work, ViDaX uses DB-
pedia as a data source and initially displays the ontology of DBpedia
as a radial tree to users. Then users can click on different types in
the ontology, e.g., dbo:Person and then several numeric and date
predicates and can create several charts that show aggregates of
some other predicates, e.g., users can generate a 2D visualization of
the number of people that were born in different years by picking
dbo:birthYear predicate and count aggregation. Filter Dials is
system that supports a specialized visualization called filter dials,

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

that presents counts of number of entities with different sets of
predicates. LinkDaViz targets a more general use case where a user
first browses and selects a set of entities and predicates from the
ontology of a knowledge graph. Then LinkDaViz’s visualization
suggestion framework suggests a list of visualizations, such as bar
or line charts to display the selected data. Similar to KTabulator,
users in these systems interactively query a knowledge graph but
for the purpose of data visualization instead of ad hoc table creation.

Browsing, Exploring, and Visualizing Knowledge Graphs:
Tabulator [12] is a browser for browsing the web and semantic
web using various views, such as a map or a calendar view that
can interpret and display location or date-related RDF tags on
pages. Tabulator allows primarily the browsing of RDF triples in the
semantic web but users can also access the original web sources that
these triples annotate. Several other work have proposed systems,
such as /facet [25] and tFacet [15], that supports faceted exploration
of knowledge graphs. Faceted exploration is a browsing technique
that organizes content into orthogonal categories. A survey on these
techniques and systems can be found in reference [46]. Prior work
has also developed systems, such asWebVOWL [30], LODmilla [31],
LODlive [16], RelFinder [24], and Semantic Data Explorer [35],
which visualize entities and the relationships among the entities
from a knowledge graph in the form of graphs. These systems
focus on browsing, exploring, and visualizing knowledge graphs
and their sources. Although browsing DBpedia and Wikipedia is
supported in KTabulator by clicking different cells, KTabulator’s
main interface is a spreadsheet interface and its main goal is to
facilitate table creation.

Query Answering With Tables and Table Union Search:
An interesting line of work in information retrieval is answer-
ing user queries with tables or columns or cells of existing ta-
bles [29, 36, 44, 52, 53]. Often these work assume a user asks a
keyword query in a natural language, such as “Mountains in North
America,” and a search system returns as results a part of a table.
These systems do not support ad hoc table creation. They help find
relevant but often incomplete tables to the needs of users but do not
provide a mechanism to complete the missing information through
exploratory iterative extensions as KTabulator.

Several recent work has investigated the problem of finding
joinable and unionable tables [33, 55] to a given input table. This
problem is a specific case of a core problem in data integration
called schema matching [40]. These references assume the linked
data setting where a user wants to extend a publicly available
datasetT , say published for the public by a government, with other
publicly available published datasets in the web. Some of these
techniques have also been integrated into a search system called
Toronto Open Dataset Search [56] that allows users to navigate
open datasets from the web by finding joinable tables. Finding
joinable and unionable tables is also related to the task of entity
completion, which focuses on finding a set of related entities to a
starting set of seed entities [23, 49]. These works focus on designing
core search algorithms instead of providing interactive capabilities
for users to explore data and generate tables from web data.

Data Transformation Systems: Researches from both HCI
and database communities developed different interactive systems
for transforming datasets from one structure to another [3, 9, 28,
32, 37]. Wrangler [28] offers an interactive framework to create

tables from unclean unstructured data. The tool relies on a predic-
tive framework and guides users throughout the data cleaning and
transforming process by providing suggestions on the following
steps. GraphWrangler [9] is a system to interactively create graphs
out of relational tables. Ultrawrap Mapper [38] also creates graphs
out of relational databases but the system is not interactive and
performs an automatic mapping between datasets. KTabulator also
transforms data between structures but instead transforms data in
a knowledge graph into a table (in addition to transforming tables
into extended tables). These data transformation systems assume
that the data has already been gathered. Another data transfor-
mation and cleaning tool, OpenRefine [3], provides some limited
capabilities of enriching data from other sources (e.g., Freebase),
however, users still need to have their own data to start with and
the tool does not provide functionalities like integrating existing
tables or guidance for data exploration. KTabulator brings together
both data transformation and gathering functionalities.

4 USAGE SCENARIO
In this section, we demonstrate a scenario of how KTabulator can
help users easily and quickly create an ad hoc table. To gain a better
understanding, we recommend you to watch the accompanying
video in our supplementary materials.

Ivan, a movie enthusiast, wants to prepare a list of around ten
movies for Karissa to watch at home, during the COVID-19 period.
Instead of simply choosing from the top rated movies from IMDB,
Ivan wants to ensure that the list of movies suits Karissa’s interest
the best. He decides to use KTabulator for this task.

Starting by creating a primary column. Ivan starts by copy-
ing and pasting the Wikipedia URL of Karissa’s favourite movie
The Dark Knight onto KTabulator’s landing page (Figure 2a). He
then chooses the action “Create a table about The Dark Knight”
indicated by the system. KTabulator then suggests a list of proper-
ties that Ivan can use to populate the primary column of the table.
He selects the property director: Christopher Nolan to add
all movies directed by Nolan, whose other movies Ivan suspects
Karissa might also like. This adds a total of only 12 movies. To
broaden his options, Ivan reflects on what Karissa likes about The
Dark Knight: it is a crime thriller movie with excellent visuals, and
adds two more sets of movies to the table by clicking on the
header of the primary column: (i) movies sharing the Wikipedia
category American crime thriller films; and (ii) movies with
both the IMAX films category and the American epic films
category (creating a customized category of IMAX American epic
films) (Figure 2b).

Expanding tables by adding and manipulating columns.
Ivan next decides to add more information about the movies in his
table to help him filter some of them out. He clicks on of an
empty column header, which updates the right panel, as shown in
Figure 2c, with a list of properties of the entities in the search column,
which is by default the primary column. KTabulator extracts these
properties by exploring in DBpedia the neighborhood of the nodes
that represent the movies in the primary column. For each property,
the panel also shows the fraction of entities in the search column
that have the property. Ivan sees and clicks on the Work/runtime
property, which 97% of the movies in the search column has, and

KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs CHI ’21, May 8–13, 2021, Yokohama, Japan

a
b

c

d

e

Figure 2: Ivan is using KTabulator to prepare a list of movies for Karissa to watch at home. (a) Pasting the Wikipedia URL
of The Dark Knight to the landing page. (b) Populating the primary column with movies directed by Christopher Nolan and
those under American crime thriller films and IMAX American epic films. (c) Adding a movie work/runtime column. (d)
Browsing the Wikipedia page of Doodlebug. (e) Choosing from the properties recommended by KTabulator.

populates the new column with this property (Figure 2c). Ivan
decides that his recommendations to Karissa should neither be too
short (less than 1 hour and 45 minutes) nor too long (longer than 3
hours). To select such movies, he first sorts his table according to
ascending runtime order, using the “Sort Ascending” option under

. Before filtering out the movies, Ivan notices something odd

about the runtimes: two movies, Doodlebug and Quay, have really
short runtimes, 3 and 8 minutes, respectively.

Exploring entities using DBpedia and Wikipedia Panels.
Ivan is curious who these movies are directed by and adds a new
column to the table and from the list of properties picks director.
He notices that both of these short movies are surprisingly directed
by Nolan. To explore these movies more, he double-clicks on the

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

a

b

c

Figure 3: Karissa is using KTabulator to refine the list of movies from Ivan. (a) Receiving the list of movies created by Ivan. (b)
Discovering tables to union on the Wikpedia page of “Palme d’Or.” (c) Selecting the table to union.

table cell for one of the two movies, Doodlebug, which updates
the right panel and the bottom Wikipedia panel of KTabulator
(Figure 2d). He reads the updated Wikipedia pages of the movies
and surprisingly learns that Nolan has directed two short movies, a
thriller from his college years and a recent documentary from 2015.
However, he does not think Karissa would be interested in these
movies and proceeds to remove the too long and too short movies
by using the “Filter" option of the runtime column using .

Exploring entities through property suggestions. Ivan next
notices KTabulator’s suggestions on the right panel (Figure 2e) to
add other properties related to the director property that he just
added. These include writer, cinematography, musicComposer,
starring, among others. KTabulator uses the semantic information
from DBpedia’s ontology to make this suggestion (specifically all of
these properties have a range of type person, i.e., their rdfs:range
is dbo:Person). Ivan next decides to add movies with Karissa’s
favourite actors, so clicks on starring to add a new column. Since
most movies feature multiple actors and actresses, Ivan chooses to
show all the different actors for each movie in a single merged cell
(an option offered by KTabulator), instead of the other option of
flattening the cell into multiple rows. He finds Karissa’s favourite
actors Anthony Hopkins and Sean Penn star in several movies, such
as Noah and Mystic River and adds the “Favorite Movie Star!” note
in a custom “Notes” column for these movies.

Sharing tables. Ivan decides to keep some of the remaining
Nolan movies in his list and adds “By Nolan” as a note on these
rows. Finally, he filters out all movies with an empty “Notes” column
and shares the result table with Karissa.

Enhancing tables using existing tables inWikipedia.Karissa
indeed finds many interesting movies in Ivan’s table (henceforth
the extracted table) as shown in Figure 3a. However, after adding
the “Country” attribute and seeing most of the movies from the
extracted table are from the United States, she decides to make the
list more international. She decides to add some of the Palme d’Or
winners from the Cannes festival. She notices that she cannot find
award-related properties of the movies when she tries to add a new

set of movies directly in KTabulator (because the DBpedia entries of
the movies do not contain award information). Instead, she searches
for “Palme d’Or” in the Wikipedia panel (Figure 3b) and locates a
pre-existing Award-winners table with 5 columns: Year, English
title, Original title, Director(s), and Country. She clicks
on “Union Table” action from the “Table Actions” tab in the right
action preview panel (Figure 3c), and the system suggests ways
to align several of the columns in the extracted table with those
in the Award-winners table. Karissa accepts the suggested align-
ment First Column↔English title, director↔Director(s),
and country↔Country. KTabulator adds the rows of the Award-
winners table to the extracted table according to the alignment and
automatically populates the starring column for the new movies
from the Palme d’Or Award-winners table using the information
from DBpedia.

5 DESIGN GOALS
Four major design goals guided our design of KTabulator. These
goals were informed by existing principles for efficiently creating
and manipulating tables [27, 28, 37] existing properties of knowl-
edge graphs [39, 50, 56, 57], and through several design iterations.

G1: Support union and join operations for data insertion.
Tables consist of a set of rows (or tuples) which are records about
entities, their properties, and their relations to other entities. There-
fore, in order for users to create tables efficiently, we needed to
support two set-oriented operations that insert data to users’ tables
in bulk fromDBpedia: (i) union, which extends a table with a new set
of rows; and (ii) join, which extends the records in a table with new
columns. For example, users in KTabulator indicate one or more
criteria, such as “movies directed by Nolan”, and insert as new rows
into their tables the set of entities in DBpedia that satisfy the crite-
ria. This contrasts with a design that would allows record-by-record
data insertion, say possibly as the user browses DBpedia entries
of individual entities. Here we had a choice to limit the support of
these operations only on the knowledge graph DBpedia, which is
the main source of structured information we focus on. However,

KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs CHI ’21, May 8–13, 2021, Yokohama, Japan

we observed that there are many high-quality pre-existing tables
in Wikipedia articles that can supplement missing information in
DBpedia. Therefore we decided to support unioning and joining
users’ tables also with pre-existing tables from Wikipedia.

G2: Provide guidance and suggestions during table creation.
Our second design goal was based on the observation that infor-
mation in Wikipedia and DBpedia is very large. For example, there
can be hundreds of properties and thousands of triples in DBpe-
dia even for a single entity and very large and multiple tables on
single Wikipedia pages. For example, there are over 2000 triples
about the city Berlin in DBpedia and over 100 tables across 74
Wikipedia pages about NBA drafts since 1947. Since, manually
searching, browsing and finding relevant information at this scale
cannot be efficient, KTabulator needs to provide guidance and sug-
gestions to users. As we explain in Section 6, KTabulator heavily
utilizes the semantic information that is stored as ontological triples
in DBpedia about entities, e.g., triples with predicates rdf:type
or rdfs:range, to suggest relevant entity properties that can be
added as new columns or finding relevant Wikipedia pages that
contain relevant pre-existing tables.

G3: Embrace data heterogeneity, inconsistencies, and spar-
sity. Our third design goal was that the system should assume that
the data in the table will be heterogeneous and inconsistent, and
sometimes sparse. This is based on several observations. First, the
set of entities that users add to their tables often satisfy different
sets of properties. For example, a user might want to create a table
of Prime Ministers of the UK and the presidents of China. Second,
because Wikipedia pages are created by humans, the extracted data
in DBpedia have inconsistencies, e.g., similar properties of enti-
ties can be tagged with different RDF predicates. Therefore, the
system should be flexible enough to keep heterogeneous sets of
entities and properties in the table. The data in DBpedia is also very
sparse, i.e., many entities also have many missing values. KTabu-
lator presents the sparsity levels of properties of entities to users
(to avoid unnecessarily adding too sparse columns) and bases its
attribute suggestion rankings taking sparsity levels into account.

G4: Support for Browsing, Processing, and Sharing Infor-
mation. Table creation is an exploratory and iterative process in
nature, so in addition to data insertion functionalities, the system
also needs to support basic functionalities to browse, process, and
share information presented in the table. Following our dual knowl-
edge graph-original source (DBpedia-Wikipedia) design, KTabula-
tor offers two preview panels to allow users to browse both DBpedia
and Wikipedia pages. We also added basic spreadsheet processing
functionality, such as sorting, filtering, searching, adding annota-
tions in custom columns, projecting out columns, and exporting
and sharing tables.

6 KTABULATOR
6.1 Overview and Main User Interface
Figure 4 shows the overall architecture of KTabulator. KTabulator
is a web application with two major components: (i) a browser-
based user interface that facilitates table creation and manipulation
actions; and (ii) a backend server that is responsible for fetching the
data the user has asked from DBpedia and pre-existing Wikipedia
tables. The system uses the public DBpedia SPARQL access point at

Browser-based	User	Interface

Wikipedia	
Servers

KTabulator	Backend

SPARQL	Translator

Table	RecommenderPredicate	Recommender

Schema	Matcher

Public	DBpedia	Endpoint

Actions

HTTP

SPARQL	Queries/Results

Data

HTTP

Figure 4: KTabulator architecture. All four components
from the backend uses the Public DBpedia Endpoint.
Schema Matcher and Table Recommender (drawn in color
blue) also communicates with the Wikipedia servers.

http://dbpedia.org/sparql which stores DBPedia triples in OpenLink
Virtuoso. To read existing tables in Wikipedia, KTabulator directly
reads Wikipedia pages and scrapes the retrieved HTML.

Figure 1 shows the main interface of KTabulator, which consists
of three panels. The Table Panel is located on the left side and
shows the table the user is creating in a spreadsheet view. There are
two types of columns: (i) primary column is the left most column
and is the main set of entities the table contains; and (ii) secondary
columns are properties of the entities in the primary column or other
secondary columns. The values in secondary columns themselves
can be entities, e.g., directors of movies, or primitive values, e.g.,
the release dates of movies. KTabulator keeps a mapping from the
entities in the cells of the table panel to the DBpedia URIs and
Wikipedia URLs of the entities. The other two panels are the Data
Actions Panel, which contains two tabs, using which users can insert
data into their tables from DBpedia or tables in Wikipedia. Finally,
at the bottom is a Wikipedia Panel, which users use to browse the
Wikipedia pages of the entities in their tables.

6.2 Table Initiation and Column Type Trees
Users start creating a table by copy-pasting the URL of a Wikipedia
page about an entity e . There are two ways to create a table: (i) by
clicking “Create a table about e”, users can add the entity e as the
first cell of the primary column; or (ii) if the Wikipedia page about
e contains tables, users can select “Start from an existing table on
page” and select one of the tables R from the page, which copy
pastes the content of R to the Table Panel. When R is copied over,
by default the left most column of R that contains entities (inferred
by the anchors in the cells in R) becomes the primary column.

At any point in time, KTabulator maintains a semantic type tree si
for each column ci in the created table. si is the type hierarchy of the
entities in ci that are annotated with the fraction of entities in ci that
have each type in the hierarchy. It is computed as follows. For each
ei in ci , KTabulator inspects the ontological triples with predicate
rdf:type. We focus on triples where the object in these triples, i.e.
the actual types, are from DBpedia Ontology, i.e., those with prefix
dbo:. In DBpedia, the rdf:type predicate of each entity ei contains
the most specific type t of ei and recursively the ancestor types of t

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

(defined through subClassOf predicates). For example, the type hi-
erarchy of The Dark Knight is dbo:Film→dbo:Work→owl:Thing.
Every entity’s type descends from owl:Thing in the DBpedia on-
tology. The union of the hierarchy of each entity forms the type
tree of the column (often a simple chain). Then for each type t in
this tree, we count the fraction of entities that are of type t , which
gives us an annotated tree, where the root owl:Thing is annotated
with 1.0. As we explain in Section 6.4, the type trees are used when
joining or unioning users’ tables with existing Wikipedia tables.

6.3 Data Gathering From DBpedia
6.3.1 Adding New Columns (Join) and Column Provenance. Users
add a new column to their tables by first selecting one of the existing
primary or secondary columns as the search column by clicking the

icon and then clicking on the icon of an empty column. The
KTabulator backend retrieves the triples where the subject is an
entity in the search column and displays the union of the predicates
in these triples in the Insert Data Panel as in Figure 2(b)1.

Predicates in DBpedia (and in other knowledge graphs) can be
quite sparse and there are often inconsistencies in the predicates.
To help users handle data sparsity in DBpedia entries, next to each
predicate, KTabulator shows a value between 0 and 1 indicating the
fraction of entities in the search column that have the predicate and
ranks the predicates in terms of these sparsity levels. The system
also allows selecting multiple predicates to add to a column. For
example, selecting dbo:releaseDate and dbo:releaseYear will
fill the cells in the column with the union of these predicates. If
a user selects multiple predicates and an entity contains multiple
triples with these predicate, users can flatten the row into multiple
rows or keep a single merged cell with multiple values.

KTabulator stores the predicates p1, ...,pk and the search column
cs that were used in populating each column ci as the provenance of
ci . The provenance is used to retrieve these predicates automatically
when new rows are added to the table (explained momentarily).

6.3.2 Adding New Rows (Union). Users add new rows to their ta-
bles by clicking the icon on the primary column. As shown
in Figure 2a, this displays the union of the predicate-object pairs
of subjects that correspond to the entities in the primary column.
Wikipedia categories which are object value of dct:subject are
displayedwithout dct:subject to simplify the interface (e.g., IMAX
films in Figure 2a). Users then select any number of the predicate-
object pairs from this list and retrieve the set of subjects from DBpe-
dia that have these predicate-object values. For example, selecting
dbo:distributor: Warner Bros and American movies will re-
turn all American movies distributed byWarner Bros from DBpedia
and added as new rows. To retrieve these movies,the SPARQL Trans-
lator at the backend issues a star query with the selected predicate
and object pairs to the DBpedia access point. Once the new entities
have been added as new rows, existing columns of the rows are
automatically filled by retrieving from DBpedia the predicates that
form the provenance of each column.
1Since knowledge graphs and RDF triples are mainly designed for computers to process,
KTabulator shortens the URIs of predicates when displaying to users to make them
more readable, e.g., dbo:writer and dbo:musicComposer are displayed as writer
and musicComposer.

6.3.3 Predicate Recommender (PR). KTabulator adopts the predic-
tive interaction framework to help users find relevant sets of pred-
icates when adding new columns. When the user indicates the
intention to add a secondary column, KTabulator’s PR module sug-
gests a list of predicates to add as a column as shown in Figure 2d.
For the first secondary column, the top 5 highest density predicates
are suggested. For an additional column cn , PR suggests predicates
using the following procedure. Suppose the last secondary column
added prior to cn is cp and cp ’s provenance is p1, ..., pk of entities
in column cs . PR first computes two sets of predicates Psem , for
semantic, and Pstr , for string, as follows. PR retrieves the ontologi-
cal triple (pi , rdfs:range, ti), where ti is the type of objects with
predicate pi and puts these types into a set T . Then PR retrieves
the ontological triples (pi , rdfs:subPropertyOf, t ′i) and also adds
t ′i to T

′. Then PR searches DBpedia for other predicates of the enti-
ties in cs that have a rdfs:range in T and rdfs:subPropertyOf
in T ′. To compute Pstr , PR searches for predicates of entities in
cs that have string values similar to p1, ...,pk checking for string
containment of pi in other predicates of entities in cs and vice versa.
Finally, PR merges Psem and Pstr and then ranks these predicates
as suggestions in decreasing sparsity levels.

6.4 Data Gathering FromWikipedia Tables
Users in KTabulator can also join and union their tables with exist-
ing tables from Wikipedia. The dual data insertion from DBpedia-
Wikipedia can happen in any order, e.g., tables that were initially
created from DBpedia or Wikipedia tables can be extended further
with DBpedia or Wikipedia tables. Users indicate the Wikipedia
table R they would like to join or union with the tableU they are
creating by going to the Wikipedia page that contains R manually,
as in our usage scenario (Figure 2e), or by selecting R from the
recommendations of the system (explained momentarily).

6.4.1 Join. Both join and union operations with R require the sys-
tem to match the columns of R andU . This is the schema matching
problem [40] in relational data management and is handled by the
Schema Matcher (SM) module of KTabulator. For joins, SM uses a
purely value-based technique. Specifically, for each column r j of
R, SM uses the URLs of the entities in ri to map them to nodes
in DBpedia. Then for each column pair ui and r j , SM computes a
joinability metric that is computed as the fraction of entities in ui
that are also in r j (so ui and uj would successfully join on these
entities). We currently limit joins of R andU to a single column and
KTabulator suggests the three highest score column pairs as the
join columns and the user confirms one of these pairs or manually
indicates another pair.

6.4.2 Union. In contrast to joining, for taking the union ofU with
R, KTabulator adopts a semantic technique. A value-based tech-
nique does not work for matching column for unioning because we
expect the values in columns to not overlap when two tables are
being unioned. Recall that KTabulator already maintains the type
tree of each column ofU . Using the URLs in the cells of R, SM also
constructs the type tree of the columns of R. The table union algo-
rithm works as follows. For each column ui inU , SM first checks if
there is any column r j in R with the similar column names (string
containment). If yes, these two columns are matched. For each

KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs CHI ’21, May 8–13, 2021, Yokohama, Japan

unmatched column r j in R and ui in U , SM computes a similarity
score sim(ui , r j) = maxt levelt ×min{ f r (t,ui), f r (t, r j)}, where (i)
t is all possible types that appear in the type tree of ui and r j ; (ii)
levelt is the level of t where owl:Thing is level 0, its child nodes,
e..g., dbo:Work are level 1, its grandchild nodes, e.g., dbo:Film are
level 2, so on and so forth. We multiply with level number to pri-
oritize matches on more specific types. Finally, (iii) f r (t,ui) and
f r (t, r j) are the fraction of entities in ui and r j respectively that
have type t (recall these are stored in the type tree). Given this
similarity metric, we do a greedy mapping where we match the
most similar columns ui and r j first, then remove those, and then
match the second highest, so and so forth. The user can modify the
suggested mapping or accept it and KTabulator will add the rows
toU by aligning the matched columns of T with their matches in
U and project out the other columns of T . SM uses a simple and
purely semantic information-based algorithm but more advanced
techniques [33, 40] can easily be integrated into KTabulator.

6.4.3 Table Recommender (TR). TR is the module in KTabulator
that searches Wikipedia for unionable and joinable tables. If the
user started creating a table from a Wikipedia page P , TR searches
up to two degree neighbors nbrs of P in DBpedia and then scrapes
the Wikipedia pages of these neighbors to find relevant tables. We
limited our search to two-degree neighbors because often tables
with exact schemas occur in pages of recurring events, such as
NBA drafts pages for different seasons, which have distance two
in DBpedia. The found tables are ranked according to their union-
ability score in the “From Wikipedia” tab in Insert Data panel. The
unionability score of a table R with user’s table U is the number of
columns SM was able to match between R andU .

6.5 Other Processing Operations
For general usability, KTabulator supports several other operations:
standard spreadsheet operations, such as filtering, sorting, and
projecting out columns, exporting the data in csv format, sharing
a created table with another user for facilitating collaboration in
KTabulator, and browsing Wikipedia and DBpedia entries of the
entities in a table by clicking on different cell.

7 USER STUDY
We conducted a user study to assess the effectiveness and usefulness
of KTabulator. The general purposes of this study was to investigate
how people use the system to create ad hoc tables that fulfill their
goals, and understand the strengths and weaknesses of the system.

7.1 Participants and Apparatus
We recruited 12 participants (eight males and four females) via
multiple mailing lists at a local university. Two participants are
between age 18–24, nine between age 25–34, and one between
35–44. Participants were all graduate students (eight Masters and
four PhDs) whose technical backgrounds include computer science,
engineering, and biology. Their self-reported familiarity with table
manipulation software (e.g., Excel) had a median of 7 and a mode
of 7 on a scale of 1 to 7 (1: no familiarity; 7: frequently using such
software). We conducted the study via a remote video conferenc-
ing software. The system was deployed as a web application and
participants accessed it from their personal computers.

7.2 Tasks and Design
As discussed in Sections 1 and 3, two classes of existing tools par-
tially provide KTabulator’s functions: tools that aim to make it
easier for users to query and explore knowledge graphs, and tools
for data cleaning and transformation. A combination of tools from
these two classes would enable our use cases and form a baseline,
but switching between tools would require copy-pasting and would
not be a fair comparison to KTabulator. The closest to our work
is SmartTables [50]. However, it is not publicly available and only
supports cell-by-cell table manipulation, so cannot support efficient
ad hoc table creation. Thus, we decided not to include a baseline in
our study design.

To evaluate KTabulator, we designed two tasks for our study:
T1: Definitive task. Participants needed to create a specific

table with some requirements, starting from a Wikipedia
page. In particular, given aWikipedia page about a university,
participants were asked to create a table containing all the
Canadian public universities that have faculty size larger than
100 and are located in cities with population larger than 50,000.
This task requires participants to employ some core features
of KTabulator, such as populating entities in the first column,
adding additional columns about the entities, and changing
the search column.

T2: Exploratory task. Participants were given an exploratory
goal to create a table containing a list of 10–15 movies of
interest to recommend for their friends. They could start from
any existing page or table by searching on Wikipedia.

T1 has a target table (i.e., the answer) to create, which allows
us to validate if participants could quickly learn the features of
KTabulator and achieve a meaningful goal. T2 is open-ended, which
allows us to examine how participants could equip themselves
with KTabulator to answer their own questions. By having these
two tasks, the study could help us examine the basic features of
KTabulator as well as explore the potential of the system.

7.3 Pilot Study
To test out our study design, we conducted a pilot study with three
participants (two males and one female). All participants are be-
tween age 25-34, whose backgrounds include computer science,
architecture, and tourism. The pilot study started with a pre-study
questionnaire, followed by a training session introducing KTabu-
lator’s features with pre-recorded videos. Then, participants com-
pleted two tasks sessions (i.e., T1 and T2), and filled in a post-study
questionnaire, followed by a semi-structured interview. Of the three
participants, only one completed the tasks and the other two were
stuck especially on T2. This was because participants had difficulty
remembering some functions introduced in the training session
at the beginning, which were essential for completing tasks (e.g.,
changing the primary column). We realized that having a single
training session covering all of KTabulator’s features overwhelmed
the participants.

7.4 Procedure
Based on the findings in our pilot study, we adjusted the procedure
for our actual study. Specifically, we split the training session (after
the pre-study questionnaire) into two. For the first training session,

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

we presented KTabulator with a pre-recorded video introducing
the core features of the system, such as adding columns and rows,
filtering. Participants were then instructed, step by step, to create a
table very similar to that in training video: a list of US presidents
who are also Nobel Prize Laureates. The experimenter could answer
any questions raised by participants. The above procedure assured
that they had the adequate skills and knowledge to complete T1.

Participants were then asked to perform T1; however, they could
ask questions related to UI if they were confused. More specifically,
six participants asked how to perform a UI action, e.g., how to
change the search column. We told them the action, e.g., a button
on the UI. Two of these six participants asked an additional question:
“Why do I only see one entry in the first column?” Both had selected
a very selective predicate, e.g., facultySize=2457, when extending
their first entity. We asked them to study the column header and
both noticed and removed this predicate. Other than these, we did
not give any direction or hint to complete the task. After finishing
the task, participants filled in the NASA TLX questionnaire based
on their experience in T1.

Next, a second training session was conducted, in which another
tutorial video was presented, showing some advanced features
of KTabulator, such as finding similar tables and unioning tables.
Again, the experimenter helped them familiarize with the addi-
tional features by creating a table similar to the one in the video:
augmenting a table of a Premier League season on Wikipedia.

Then, participants were given up to 15 minutes to complete T2
independently and without back and forths with the experimenter.
Similarly, they filled in the NASA TLX questionnaire based on
their experience in T2, as well as an exit-questionnaire to gather
their impression of KTabulator in both tasks. Finally, we conducted
a semi-structured interview to collect their feedback. In the end,
participants received $25 for their time and effort. The whole study
lasted about 70 minutes for each participant. We screen-captured
the task sessions and audio-recorded the interviews.

8 RESULTS
In this section, we report our results from the user study, including
both quantitative measures and qualitative feedback. We denote
the participant as P# in the following.

8.1 Task Performance
On average, participants spent 7min 53s (σ = 4min 6s) for the
definitive task (T1). Of all the participants, eight perfectly completed
the task by meeting all the requirements, and three partially met
the requirements by incorrectly setting the filters for the faculty
size or population. P4 did not catch the country=Canada condition
from the task description “Canadian public universities” and thus
ended with a very different table. However, the mistakes due to
misinterpretation were less of an indicator of the effectiveness of
KTabulator.

An ideal solution to T1 would be: (1) populate the primary col-
umn by universities with country=Canada and type=public, (2)
add faculty size and city, (3) change the city as the search
column and add population, and 4) filter the faculty size and
population. Of the 11 participants who completed the task well,
seven followed a very similar approach, while four added the

country or the university type as a separate column later and
used filtering to meet the requirements. This reveals the flexibility
of KTabulator, supporting multiple ways to achieve the same goal.
Actually, P2 and P7, who missed the condition country=Canada
initially for the primary column, got back on track by adding
country as a predicate from KTabulator’s predicate recommen-
dation (and later filtering rows with value Canada). In addition,
seven participants were able to add city and population using
the predicate recommender, while others manually selected the
predicates for each column. Interestingly, P2 used the cell preview
for city, population, and density, before manually selecting the
population. It is encouraging that the guidance and suggestions
offered by KTabulator allow most participants to be effective in
completing the task, even if they sometimes went off the “opti-
mal” path. During the process, P7 and P11 needed a reminder for
changing the search column to city in order to add population.
Currently, KTabulator’s suggestions are based on a single search
column, which can possibly be extended to all columns in the future.

For the exploratory task (T2), participants were able to create
a variate of tables, such as Steven Speilberg’s films with awards,
2000’s comedy films with starring and director’s birthplace, Tom
Hank’s movies with reasonable length and high budget, etc. The
average time taken by participants was 11min 33s (σ = 5min 22s).
Seven of 12 participants started their exploration from a Wikipedia
page about an entity (e.g., director, movie), and the rest of them
started from an existing table. Further, six participants explored
predicates one hop away in the knowledge graph from the entity
they started, and three explored two hops away, such as adding a
column for birthdates of directors of movies in the primary column.
Four participants frequently used the predicate recommendation
feature to select new predicates to add as a column; specifically, P5
and P10 avoided adding predicates with very low sparsity levels
(e.g., release date).

8.2 Questionnaire Ratings
Figure 5 shows participants’ ratings on the NASA TLX question-
naires and the exit-questionnaire. We can see that for the definitive
task (T1), most participants (at least 9 out of 12) rated 4 or below
on each question, indicating that they were comfortable of using
KTabulator and felt successful for doing their tasks. P6 rated 6 for
the Performance factor, because they only partially completed the
task, due to incorrect use of filter. The results of the exploratory
task (T2) seem slightly better compared to that of T1, which might
be because participants got more familiar with the system or they
were more engaged with an open-ended task. Also, for each ques-
tion, at least 9 out of 12 participants gave a rating of 4 or less. One
participant (P14), who tried to find a unionable table in T2, rated
6 on the Frustration factor. This participant started with a Marvel
character table and tried to find a table with movie titles to union
with the character table. The system did not find unionable tables
in this case.

Moreover, the results of the exit-questionnaire, in general, indi-
cate that participants had a good experience of using KTabulator.
While two participants gave a score of 3 on “easy to learn,” a major-
ity of them thought the system was both easy to learn and use (Q1
and Q2). Participants especially appreciate KTabulator’s abilities to

KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs CHI ’21, May 8–13, 2021, Yokohama, Japan

0 2 4 6 8 10 12
Count

Frustration (T2)
Effort (T2)

Performance (T2)
Temporal Demand (T2)

Mental Demand (T2)
Frustration (T1)

Effort (T1)
Performance (T1)

Temporal Demand (T1)
Mental Demand (T1)

1 (Low demand/Success) 2 3 4 5 6 7 (High demand/Failure)

(a)

0 2 4 6 8 10 12
Count

Q13: Useful to look at cell preview
Q12: Bottom page is useful for exploration

Q11: Suggestions are helpful
Q10: Useful to add rows from unionable tables

Q9: Useful to extract tables from Wiki
Q8: Easy to extend table by adding rows

Q7: OR of attributes is useful
Q6: AND of attributes is useful

Q5: Easy to extend table by adding columns
Q4: Useful to create table about Wikipedia entity

Q3: Useful to create/extend existing table from Wiki
Q2: Easy to use

Q1: Easy to learn

1 (Strongly Disagree) 2 3 4 5 6 7 (Strongly Agree)

(b)
Figure 5: (a) Participants’ ratings on the NASA TLX questionnaire for T1 and T2 (the lower the better). (b) Participants’ ratings
on the exit-questionnaire (the higher the better).

create or extend tables from the information on a Wikipedia page
(Q3 and Q4). They believed that extracting tables from Wikipedia
helps them find information needed for table creation (Q9 and Q10),
and the logical AND and OR operations (Q6 and Q7) were helpful
for manipulating predicates to add to the tables. The AND and OR
operations refer to the ability to select multiple predicates when
adding new rows or columns, respectively from DBpedia (recall Sec-
tion 6). Furthermore, they thought that adding rows and columns
was generally easy (Q5 and Q8). A majority of participants ap-
plauded for the predicate recommendation feature (Q11). Similarly,
they appreciated the Wikipedia page view and the cell preview
features (Q12 and Q13); however, for each of the two questions,
there was one participant who thought it was not that useful. Their
feedback will be reported in the following section.

8.3 Qualitative Results
We conducted thematic analysis on our interviews with the partici-
pants. In the following, we report the results in correspondence to
the design goals in Section 5 and describe participants’ feedback
on comparing KTabulator with existing relevant tools.

8.3.1 Data Extraction and Curation (G1 and G3). Supporting data
extraction and curation based on knowledge graphs while embrac-
ing the specific characteristics of real-world data is an essential
part of our design. In general, participants had a good impression
to KTabulator, mentioning many potential applications such as cre-
ating ad hoc tables for personal interests and recreation, academic
research, and any information sharing or comparison tasks. For
example, P11 said that “There are different algorithms with different
time complexity and space complexity. It’s good to have those in one
page using the tool, so you can call it like cheat sheets.”

What participants appreciated the most was KTabulator’s ability
of saving much time and effort for them to collect relevant informa-
tion. “I like the idea that I can aggregate information from multiple
Wikipedia pages. Otherwise, I’ll probably open a bunch of different
tabs and try to figure out information from different pages.”-P1. “You
know thatWikipedia has a bunch of information subjected to the topic.
So if you were manually to understand those information without
the tool, it will take a lot of time.”-P4. This was echoed by P11: “You
do not have to manually enter the information or write the code to
extract the information,” and P10: “I can create my own table and

curate it the way I want. Suppose I’m trying to find car accidents from
the year 2010, I am able to extract that easily if Wikipedia has the
information.” But several participants were concerned about the
slow performance of KTabulator for operating on large tables.

Moreover, participants were impressed by the powerful join and
union operations offered by KTabulator. “The most useful feature I
would say is I can have any one example of something, and it can give
me a whole list of that something.”-P5. Similarly, they liked the abil-
ity to “keep on adding different attributes [predicates] to whatever we
want to find”-P6. P12 echoed: “Adding other attributes [predicates]
based upon a certain column was really helpful, for example, I wanted
to see the country or nationality of a person.” Also, the AND and OR
operations of predicates in table columns were applauded by partic-
ipants, especially in “the initial population of columns”-P1. However,
participants had a difficult time to understand the “unionability
score” that indicates the similarity between the found tables and
the current table, especially for those without a computer science
background, which were displayed next to the suggested tables.
They were also confused about the missing entries in the table,
displayed as “N/A” by the system. “I saw some tables are missing
data. I’m not sure if their Wikipedia pages themselves are not having
the correct data, or some tables didn’t have specific cell values.”-P12.

8.3.2 Guidance and Suggestion (G2). KTabulator’s ability on pro-
viding guidance and suggestion made it easy for participants to
create their desired tables. The predicate recommendation feature
helped participants in two ways. First, it offered them a starting
point when they were not certain. “Sometimes it suggests things that
you really don’t initially have in mind. So I think, oh, this would be
useful to include.”-P7. “I think the most useful function is browsing
through the attributes [predicates] in the very beginning. Because
that’s kind of the most frustrating thing you encounter when you’re
looking for data, like where to start.”-P9. Second, it helped partici-
pants find related information more effectively, such as “We can
easily select from the suggested attributes [predicates] to add more
columns to build more comprehensive tables.”-P4. Also, “Being able to
actually find different attributes [predicates] for each of the individual
[entities] was really useful, because sometimes I might not even know
what I’m looking for, or what exactly I need for the question.”-P3. In
addition to predicate recommendation, the table recommendation
feature to union by KTabulator was appreciated. “You have different

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

tables and then you do it manually. [...] When you import one table,
it recommends what other tables you can have.”-P12.

Together with the recommendation features, being able to get a
preview of the information to add allowed participants to collect
the right data efficiently. P11 commented: “The right side shows
you different attributes [predicates] you can choose from. So that’s
good because if you don’t have any idea, you can just scroll down and
see okay, I just select one and it shows a preview before you click on
OK.” Also, P3 mentioned that “When I saw the number between the
brackets, I kind of realized that if I clicked on them, I wouldn’t get
that much information from them. So, I would avoid scrolling down
to them.” On the other hand, P5, who rated 2 on Q13, never used
this preview feature in any of the two tasks.

8.3.3 Information Browsing, Processing, and Sharing (G4). Overall,
participants appreciated the available features in KTabulator for
browsing, processing, and sharing the tables they created. They
thought filtering and ranking table columns were essential. How-
ever, P1, P4, P5, and P9 required “adding a range filter.” Some partic-
ipants (P2, P3, and P8) also suggested to incorporate a feature for
excluding columns and rows as well as manually editing and adding
entries. About sharing, P3 provided a deep insight: “In my field, be-
ing able to organize information and share it in a very intuitive way,
is very important. So I would use it to look for tables that already exist
in Wikipedia and try to aggregate them: comparing the gas taxes and
perhaps finding a Wikipedia page that has all the different countries
and all the different gas taxes.” Moreover, while most participants
thought browsing Wikipedia page at the bottom panel was useful,
P11 complained that “I can not see much information for like three or
five lines.” Similarly, P12 wanted the panel to pop up when double
clicking on a cell. P3 (who rated 3 on Q12), in contrast, said that
“I personally didn’t use the Wikipedia page preview a lot. I hid that
most of the time, but I can see why it might be useful to have it.”

8.3.4 Comparison to Existing Tools. During the interview, we asked
participants to compare KTabulator with any existing tool they
would use for similar tasks, such as Excel or Google Spreadsheet.
Most of them compared KTabulator with Excel and Google Spread-
sheet, whereas some brought up certain data gathering APIs. While
participants thought Excel and Google Spreadsheet are powerful
and more familiar to them, they especially emphasized the data
gathering features that are only available in KTabulator. “If I need
to find information from Wikipedia, a big advantage of this system is
the speed. For Excel, I’d have to manually get the information that
I’m looking for.”-P5. “I like it takes off the workload. As I was saying,
in Excel you have to do everything. This system does most of the work
for you, and you can then use that to make a little bit of adjustments
to fix it up.”-P7. Another advantage participants highlighted was
the recommendation capabilities of KTabulator. “Based upon a cer-
tain column, it recommends the next column, what you can add data
according to the column. Whereas in Excel, you will have to search
on your own and then copy into a cell.”-P12. However, they thought
Excel has better formatting and data processing functions, such as
filtering, sorting, pivoting tables, etc.

When compared with data gathering APIs, participants appreci-
ated that KTabulator is easy to use, flexible, and effective to navigate
information. For example, P2 said that “There is probably an API for
Wikipedia, but then there will be a lot of digging and filtering.” “APIs

are not as flexible, because you can get only a specific kind of infor-
mation,” also commented by P5. In addition, P10 mentioned: “To
get the information I would definitely use your tool over anyone else
because it’s pretty easy to navigate. I would get information, create a
table from your tool, and then export it maybe to excel and run some
other analyzes.”

9 DISCUSSION
While the results of the user study indicate the effectiveness of
KTabulator for supporting participants to build ad hoc tables, the
system still has some drawbacks. Our user study has revealed three
broad usability challenges of KTabulator including table/data trans-
formation, recommendation, and sparsity. We first discuss these
challenges and then other limitations of KTabulator and our study.

Table Transformation Functions:Currently, KTabulator does
not support advanced table operations, such as table pivoting, com-
posing formulas, plotting charts, etc, which were requested or men-
tioned by several participants. For example, four participants re-
quested a range filter on columns and two requested better sorting
capability in the interview section. While our focus in this paper is
about gathering data and building ad hoc tables, it is also clear that
these spreadsheet functionalities are necessary to provide a better
experience for users creating tables using KTabulator.

Data/Table Recommendation Searching: Three participants
searched for tables to union with their tables but KTabulator failed
to give suggestions. We later manually revisited these scenarios and
found that if KTabulator had an adaptive way to expand its search
for unionable tables, e.g., search for further degree neighbors of the
Wikipedia table that users started from, or decrease its unionability
score, the system could have found relevant tables to suggest.

Data Sparsity: Another usability challenge is handling of miss-
ing and wrong values, which are ubiquitous in data on the web. In
several cases, participants saw many N/A’s after they populated a
column. Although our data availability score in the preview feature
warns them about the missing values, participants were still not sat-
isfied when they saw many missing data values in cells. Moreover,
three participants searched for data that did not exist in DBpedia
(e.g., IMDb movie ratings). KTabulator naturally failed to provide
any data. This part of the problem is inherent because KTabulator is
designed to only work with Wikipedia and DBPedia and an impor-
tant challenge is to provide access to other data sources. This will
raise many further challenges, e.g., handling the data heterogeneity
across sources.

Other Limitations: KTabulator is currently implemented with
public endpoint of DBpedia, which has two drawbacks. First, it is
not up to date with the most recent DBpedia version and contains
some mismatches with some parts of Wikipedia. This did not create
much problems in our user study. More important drawback is that
the query execution times are rather slow, as P12 complained: “If
this could bemade faster for long tables, that would (make your system
more) helpful.” Instead of using the public DBpedia endpoint, we
can easily extend our system to maintain a local RDF store to keep
and update the knowledge graph and improve our query execution
times. We plan to have our own knowledge graph store for this
project in future. Additionally, we could improve the backend of

KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs CHI ’21, May 8–13, 2021, Yokohama, Japan

the system to enhance the user experience by adding a query cache
and progressively loading long tables.

Also, KTabulator does not support direct multi-hop exploration
from a single entity. Users need to add one column at a time to do
multi-hop exploration. We plan to add this feature in future. We
can get design inspiration from the tool S-Paths [19], which allows
direct multi-hop exploration by putting them in a drop-down list for
selection. However, adding direct multi-hop exploration will add
more complexity to KTabulator’s user interface and needs further
study to find a cleaner design.

Study Limitations: Our user study has few unavoidable lim-
itations. First, we did not compare our system with any baseline
systems because no prior system we are aware of provides the full
functionality of KTabulator, though a baseline can be formed by
allowing users to use a mix of systems, e.g., a SPARQL query system
along with a spreadsheet software.

However, we did not think that is a fair comparison given that
even these combinations could require a lot of copy pasting. Second,
participants did not create tables based on their needs and on their
own timeframes; instead, we designed T1 in a restrictive way and T2
with a predetermined topic. While this allowed us to better control
what participants could do and thus derive consistent insights, we
could miss many other factors about the usability of KTabulator.
Third, our study was conducted in a lab setting and we did not have
a large number of participants. Future development of KTabulator
within a realistic setting would be necessary to investigate the
usage of the system.

10 CONCLUSION AND FUTUREWORK
We addressed the problem of ad hoc table creation for personal use
through a system that allows users to tabulate the structured in-
formation in DBpedia and Wikipedia. Many other tasks in practice
require creating tables, such as data preparation for data science,
which can be a very time consuming task. In this paper we focused
on creating tables from the data in DBpedia-Wikipedia domain.
However, our general design principles, such as the use of a dual
knowledge graph-original data sources, or use of semantic informa-
tion that is encoded in the ontology of the knowledge graphs, can
be applied to extend KTabulator to create tables from other domains.
In principle, it is possible to extend KTabulator to support using
multiple knowledge graphs (and their original sources when avail-
able) from the open linked data space, which refers to the publicly
available knowledge graphs and datasets. This is because, knowl-
edge graphs in open linked data refer to each other using ontologi-
cal predicates such as owl:sameAs, e.g., indicating that the entity
dbo:Christopher_Nolan is the same as wikidata:Christopher
Nolan inWikidata or even the http://d-nb.info/gnd/12394192X
entity in the German National Libraries catalogue that is exposed as
a knowledge graph [34]. The Semantic Web [13], which lead to the
emergence of linked data, is the vision to create a world-wide web
of structured data that is accessible by software. We believe there
is also tremendous value in putting humans in loop and facilitating
humans to directly access the entire linked data through interactive
systems. This would allow users to extract more complete tables
and from a much wider range of domains. Doing so would also raise
several important challenges, such as scalable ontology mapping,

entity resolution, and querying of heterogenous knowledge graphs
when same triples exist in multiple domains, which we identify as
venues for future research.

ACKNOWLEDGMENTS
This research is supported by a grant from the Waterloo-Huawei
Joint Innovation Laboratory.

REFERENCES
[1] 2004. Resource Description Framework (RDF): Concepts and Abstract Syntax.

https://www.w3.org/TR/rdf-concepts/.
[2] 2008. About: The Dark Knight (Film). http://dbpedia.org/page/The_Dark_Knight_

(film).
[3] 2013. OpenRefine. https://openrefine.org/.
[4] 2013. SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-

query/.
[5] 2020. Baidu Baike. https://baike.baidu.com/.
[6] 2020. What is a Knowledge Graph? https://www.ontotext.com/knowledgehub/

fundamentals/what-is-a-knowledge-graph/.
[7] 2020. Wikipedia: The Free Encyclopedia. https://www.wikipedia.org/.
[8] Faheem Abbas, Muhammad Kamran Malik, Muhammad Umair Rashid, and

Rizwan Zafar. 2016. WikiQA—A question answering system on Wikipedia us-
ing freebase, DBpedia and Infobox. In 2016 Sixth International Conference on
Innovative Computing Technology (INTECH).

[9] Nafisa Anzum, Semih Salihoglu, and Daniel Vogel. 2019. GraphWrangler: An
Interactive Graph View on Relational Data. In Proceedings of the 2019 International
Conference on Management of Data.

[10] Maurizio Atzori, Giuseppe M Mazzeo, and Carlo Zaniolo. 2019. QA3: A natural
language approach to question answering over RDF data cubes. Semantic Web
10, 3 (2019).

[11] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
Semantic Web.

[12] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer, and David Sheets. 2006. Tabulator: Exploring and
analyzing linked data on the semantic web. In Proceedings of the 3rd International
Semantic Web User Interaction Workshop.

[13] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The semantic web.
Scientific american 284, 5 (2001).

[14] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data.

[15] Sören Brunk and Philipp Heim. 2011. tFacet: Hierarchical Faceted Exploration of
Semantic Data Using Well-Known Interaction Concepts.. In DCI@ INTERACT.

[16] Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio. 2012.
LodLive, exploring the web of data. In Proceedings of the 8th International Confer-
ence on Semantic Systems.

[17] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang,
and Wei Wang. 2019. KBQA: learning question answering over QA corpora and
knowledge bases. arXiv preprint arXiv:1903.02419 (2019).

[18] Alessio De Santo and Adrian Holzer. 2020. Interacting with Linked Data: A Survey
from the SIGCHI Perspective. In Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems.

[19] Marie Destandau, Caroline Appert, and Emmanuel Pietriga. 2020. S-Paths: Set-
based visual exploration of linked data driven by semantic paths. Semantic Web
Preprint (2020), 1–18.

[20] Bruno Dumas, Tim Broché, Lode Hoste, and Beat Signer. 2012. Vidax: An in-
teractive semantic data visualisation and exploration tool. In Proceedings of the
International Working Conference on Advanced Visual Interfaces.

[21] Sébastien Ferré. 2017. Sparklis: an expressive query builder for SPARQL endpoints
with guidance in natural language. Semantic Web 8, 3 (2017).

[22] Florian Haag and Thomas Ertl. 2014. Filter dials: combine filter criteria, see how
much data is available. In Proceedings of the 2014 International Working Conference
on Advanced Visual Interfaces.

[23] Yeye He and Dong Xin. 2011. Seisa: set expansion by iterative similarity aggre-
gation. In Proceedings of the 20th International Conference on World Wide Web
(WWW).

[24] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo
Stegemann. 2009. RelFinder: Revealing relationships in RDF knowledge bases. In
International Conference on Semantic and Digital Media Technologies.

[25] Michiel Hildebrand, Jacco Van Ossenbruggen, and Lynda Hardman. 2006. /facet:
A browser for heterogeneous semantic web repositories. In International Semantic
Web Conference.

CHI ’21, May 8–13, 2021, Yokohama, Japan Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao

[26] Frederik Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak. 2010.
RDF-GL: a SPARQL-based graphical query language for RDF. In Emergent Web
Intelligence: Advanced Information Retrieval. 87–116.

[27] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.

[28] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.

[29] Xiao Ling, Alon Y Halevy, Fei Wu, and Cong Yu. 2013. Synthesizing union
tables from the web. In Twenty-Third International Joint Conference on Artificial
Intelligence.

[30] Steffen Lohmann, Vincent Link, Eduard Marbach, and Stefan Negru. 2014. We-
bVOWL: Web-based visualization of ontologies. In International Conference on
Knowledge Engineering and Knowledge Management.

[31] András Micsik, Zoltán Tóth, and Sándor Turbucz. 2013. Lodmilla: Shared visual-
ization of linked open data. In International Conference on Theory and Practice of
Digital Libraries.

[32] John Morcos, Ziawasch Abedjan, Ihab Francis Ilyas, Mourad Ouzzani, Paolo
Papotti, and Michael Stonebraker. 2015. Dataxformer: An interactive data trans-
formation tool. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data.

[33] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table union
search on open data. Proceedings of the VLDB Endowment 11, 7 (2018).

[34] Deutsche Nationalbibliotek. 2016. The Linked Data Service of the Ger-
man National Library. https://www.dnb.de/SharedDocs/Downloads/EN/
Professionell/Metadatendienste/linkedDataModellierungTiteldaten.pdf?__
blob=publicationFile&v=2.

[35] Heiko Paulheim and Lars Meyer. 2011. Ontology-based information visualization
in integrated UIs. In Proceedings of the 16th International Conference on Intelligent
User Interfaces (IUI).

[36] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering table queries on the
web using column keywords. Proceedings of the VLDB Endowment 5, 10 (2012).

[37] Vijayshankar Raman and J Hellerstein. 2001. Potters wheel: an interactive frame-
work for data cleaning and transformation. Working Draft (2001).

[38] Juan F Sequeda and Daniel P Miranker. 2015. Ultrawrap Mapper: A Semi-
Automatic Relational Database to RDF (RDB2RDF)Mapping Tool.. In International
Semantic Web Conference (Posters & Demos).

[39] Zhaohua Sheng, XinWang, Hong Shi, and Zhiyong Feng. 2012. Checking and han-
dling inconsistency of DBpedia. In International Conference on Web Information
Systems and Mining.

[40] Pavel Shvaiko and Jérôme Euzenat. 2005. A Survey of Schema-Based Matching
Approaches. In Journal on Data Semantics IV. Vol. 3730.

[41] Paul R Smart, Alistair Russell, Dave Braines, Yannis Kalfoglou, Jie Bao, and Nigel R
Shadbolt. 2008. A visual approach to semantic query design using a web-based
graphical query designer. In International Conference on Knowledge Engineering
and Knowledge Management. Springer.

[42] Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Guillermo Vega-Gorgojo, and
Ian Horrocks. 2016. Experiencing OptiqueVQS: a multi-paradigm and ontology-
based visual query system for end users. Universal Access in the Information

Society 15, 1 (2016).
[43] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of

semantic knowledge. In Proceedings of the 16th International Conference on World
Wide Web (WWW).

[44] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan. 2016.
Table cell search for question answering. In Proceedings of the 25th International
Conference on World Wide Web (WWW). 771–782.

[45] Klaudia Thellmann, Michael Galkin, Fabrizio Orlandi, and Sören Auer. 2015.
LinkDaViz–automatic binding of linked data to visualizations. In International
Semantic Web Conference.

[46] Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. 2017. Faceted explo-
ration of RDF/S datasets: a survey. Journal of Intelligent Information Systems 48,
2 (2017).

[47] Hernán Vargas, Carlos Buil-Aranda, Aidan Hogan, and Claudia López. 2019.
RDF Explorer: A Visual SPARQL Query Builder. In International Semantic Web
Conference. 647–663.

[48] Denny Vrandečić. 2012. Wikidata: A new platform for collaborative data col-
lection. In Proceedings of the 21st International Conference on World Wide Web
(WWW).

[49] Chi Wang, Kaushik Chakrabarti, Yeye He, Kris Ganjam, Zhimin Chen, and
Philip A Bernstein. 2015. Concept expansion using web tables. In Proceedings of
the 24th International Conference on World Wide Web (WWW).

[50] Shuo Zhang, Vugar Abdul Zada, and Krisztian Balog. 2018. SmartTable: A Spread-
sheet Program with Intelligent Assistance. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval.

[51] Shuo Zhang and Krisztian Balog. 2017. Entitables: Smart assistance for entity-
focused tables. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

[52] Shuo Zhang and Krisztian Balog. 2018. Ad hoc table retrieval using semantic
similarity. In Proceedings of the 2018 World Wide Web Conference (WWW).

[53] Shuo Zhang and Krisztian Balog. 2018. On-the-fly table generation. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval.

[54] Weiguo Zheng, Hong Cheng, Lei Zou, Jeffrey Xu Yu, and Kangfei Zhao. 2017.
Natural language question/answering: Let users talk with the knowledge graph.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management.

[55] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. 2016. LSH
ensemble: internet-scale domain search. Proceedings of the VLDB Endowment 9,
12 (2016).

[56] Erkang Zhu, Ken Q Pu, Fatemeh Nargesian, and Renée J Miller. 2017. Interactive
navigation of open data linkages. Proceedings of the VLDB Endowment 10, 12
(2017).

[57] Lei Zou, Ruizhe Huang, HaixunWang, Jeffrey Xu Yu, Wenqiang He, and Dongyan
Zhao. 2014. Natural language question answering over RDF: a graph data driven
approach. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data.

