
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

The Effect of Edge Bundling and Seriation on
Sensemaking of Biclusters in Bipartite Graphs

Maoyuan Sun, Jian Zhao, Hao Wu, Kurt Luther, Chris North and Naren Ramakrishnan

Abstract—Exploring coordinated relationships (e.g., shared relationships between two sets of entities) is an important analytics task in
a variety of real-world applications, such as discovering similarly behaved genes in bioinformatics, detecting malware collusions in
cyber security, and identifying products bundles in marketing analysis. Coordinated relationships can be formalized as biclusters. In
order to support visual exploration of biclusters, bipartite graphs based visualizations have been proposed, and edge bundling is used
to show biclusters. However, it suffers from edge crossings due to possible overlaps of biclusters, and lacks in-depth understanding of
its impact on user exploring biclusters in bipartite graphs. To address these, we propose a novel bicluster-based seriation technique
that can reduce edge crossings in bipartite graphs drawing and conducted a user experiment to study the effect of edge bundling and
this proposed technique on visualizing biclusters in bipartite graphs. We found that they both had impact on reducing entity visits for
users exploring biclusters, and edge bundles helped them find more justified answers. Moreover, we identified four key trade-offs that
inform the design of future bicluster visualizations. The study results suggest that edge bundling is critical for exploring biclusters in
bipartite graphs, which helps to reduce low-level perceptual problems and support high-level inferences.

Index Terms—Bicluster, edge bundling, seriation, visual analytics.
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1 INTRODUCTION

C Oordinated relationship exploration is an important task in
various domains (e.g., investigating coordinated threats in

intelligence analysis [1], detecting malware collusion in cyber se-
curity [2], and discovering similarly behaved genes in bioinformat-
ics [3]). It is hard to manually find coordinated relationships, since
analysts need to aggregate multiple entities by considering shared
connections. This requires a significant amount of cognitive effort
for checking individual relationships between pairs of entities.

Computational methods have been applied to help this. Specifi-
cally, biclusters, algorithmically identified groups of relationships,
have been applied in visual analytics tools to support coordinated
relationship explorations [4], [5], [6]. A bicluster is a grouped rela-
tionships between two sets of entities (e.g., persons and locations),
where each entity in one set is related to all entities in the other.
A bicluster reveals a specific coordinated relationship (e.g., four
people visited the same three cities).

Biclustering algorithms find biclusters based on co-occurrence
(e.g., CHARM [7] and LCM [8]), rather than semantic meanings.
Referring to semantic meanings requires domain knowledge that
computation lacks. This calls for visualizations that enable human
to use domain knowledge for analysis (e.g., displaying biclusters
in context of entities to direct user attention to meanings of entity
labels). This is an important goal of visual analytics [9]. Moreover,
computed biclusters are in a machine readable format (e.g., collec-
tions of entity IDs) and may overlap each other by sharing entities,
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so it is not easy for analysts to understand them and identify useful
ones. For making biclusters usable, visualizations are necessary.

The fundamental challenge of visualizing biclusters are Euler
diagram problems [10]. Because of overlaps, for clearly displaying
biclusters and their entities, we have to either duplicate entities for
making members of biclusters spatially near each other, or break
biclusters by spatially separating their members to keep entities
unique. This is the key design trade-off of bicluster visualizations:
relationship-centric v.s. entity-centric [6]. In order to balance this,
a bipartite graph based technique, BiSet [6], has been proposed. It
groups edges into bundles, in the graph, to present biclusters and
spatially seprates them, without duplicating entities. Memberships
of entities are revealed by edges linking a bicluster and an entity.

While biclusters and entities are visually separated with differ-
ent encodings, this edge bundling based technique may still suffer
from edge crossings, when biclusters highly overlap. Moreover,
we lack in-depth understanding of the impact of edge bundles
on user exploring biclusters in bipartite graphs. For example, can
edge bundles help users find complex domain specific coordinated
relationships based on computed biclusters, by using their domain
knowledge (e.g., considering the meanings of entity labels)? How
much performance gain (e.g., accuracy) do bundles bring? How is
the number of entity visits affected in user explorations? Are there
any trade-off comparing using edge bundling to without them?

To address the edge crossing problem and answer above ques-
tions, we propose a novel bicluster-based seriation technique and
conducted a user experiment to study the effect of edge bundling
and the proposed ordering technique for bicluster explorations in a
bipartite graph. Our key contributions in this paper are as follows:

1) We propose a novel bicluster-based seriation technique that
helps to reduce edge crossings in bipartite graphs drawing, where
biclusters are shown as edge bundles, and entities are displayed as
nodes in the graph.

2) We present a detailed study design of a user experiment,
as the first attempt to evaluate edge bundling and our proposed
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Fig. 1. An example of a bicluster that shows a coordinated relationship
between four students and three courses. (A) presents detailed relation-
ships between every student and each course. (B) illustrates the result
of grouping individual relationships with an edge bundle.

seriation technique on visualizing biclusters in bipartite graphs.
3) We identify four trade-offs when using the two techniques

to support biclusters exploration in bipartite graphs. They lead to
useful design implications for tools that visualize relationships.

4) We find that edge bundling is critical for exploring biclusters
in bipartite graphs. It helps to free users from low-level perceptual
problems and support them making high-level inferences.

2 BACKGROUND

2.1 Bicluster
Biclusters are outcomes from biclustering algorithms. They reveal
coordinated relationships between two sets of entities. Algorithms
for bicluster discovery (e.g., CHARM [7] and LCM [8]) typically
try to find closed biclusters [11]. A closed bicluster is a complete
bipartite graph, where every entity in one set is connected with
each entity in the other, from a graph perspective. The cardinality
of the two sets describes the size of a bicluster. Figure 1 shows an
example of a closed bicluster, indicating a coordinated relationship
that all four students take three courses, and its size is 4×3.

2.2 BiSet
BiSet [6] is a recently proposed technique to visualize biclusters in
bipartite graphs based layout. It shows biclusters as edge bundles
in-between two entity-lists. This edge-bundles-as-biclusters con-
cept in BiSet is shown in Figure 1 (B). BiSet aggregates individual
edges into bundles based on computed biclusters, so each bundle
represents a bicluster. Moreover, on top of an edge bundle, BiSet
uses two rectangles, with rounded corners, to indicate the number
of involved entities. Thus, in BiSet, entities and biclusters locate
in different lists, with different visual encodings.

2.3 Seriation
Seriation is an exploratory data analysis technique [12]. It per-
mutes the order of objects to get a sequence where the regularity
and pattern (e.g., clustering structure [13]) among the whole series
can be well revealed. Seriation is commonly used to show patterns
in a matrix by permuting rows and columns (e.g., Bertifier [14],
BiVoc [15] and Termite [16]). Seriation in a matrix with M rows
and N columns attempts to find orders of rows and columns that
optimize certain objective function. Finding all possible combi-
nations of ordering rows and columns in a matrix is (M!N!)/2,
which is computationally expensive. Thus, seriation in a matrix is
performed heuristically.

Different seriation methods use different objective functions
to pursue heuristic solutions. For instance, Robinson [17] heuris-
tically place the highest value along the diagonal in a matrix for
seriation. The optimal leaf ordering method [18] begins with a

hierarchical clustering of rows (or columns) and finds an order,
which tries to minimize the sum of distances between consecutive
items in the dendrogram. Statistical analysis methods have also
been used for matrix seriation. For example, principal component
analysis (PCA) [19] and correspondence analysis (CA) [20] treat
a matrix as a high-dimensional data (rows as observations and
columns as variables) and attempt to find two orthogonal axes as a
2D space to project data. In this 2D space, the total variance of the
data can be maximized, and the order on the two orthogonal axes is
the seriation result. In this work, we use CA to perform seriation
in lists for edge crossing reduction. Section 3.2.1 discusses the
connections between CA and edge crossings in lists.

2.4 Related Evaluation

Matrix is a well studied layout to show biclusters, especially in the
bioinformatics domain for gene behavior analysis (e.g., [15], [21],
[22], [23], [24]). Each bicluster is displayed as a matrix, which has
been found helpful to support text analytics [4], [25] by directing
user attention to related documents. These are exploratory studies
focusing on how visualized biclusters are used to help connect
information from documents, rather than coordinated relationship
exploration. The size of biclusters used in these studies was at
least 3×3, which helps us select the bicluster size.

Despite showing coordinated relationships, edge bundling [26]
has been used in graphs for visual clutter reduction based on cer-
tain rules (e.g., force-directed model [27], spatial proximity [28],
network connectivity [29], and hierarchical structure in data [30]).
By reducing the number of edges displayed, edge bundling helps
to improve the graph readability [29], [31]. The bundling concept
has also been used to help track animated objects [32]. Seriation
has been explored in matrix-based layouts to show patterns, and a
comprehensive survey of seriation can be found in [33]. However,
it still lacks in-depth understanding of the two techniques for visu-
alizing biclusters to support coordinated relationship explorations.

3 SERIATION IN BIPARTITE GRAPHS

3.1 Design Requirement Analysis

In a bipartite graph based layout, like BiSet, the position of entities
and their associated biclusters can impact edge crossings, because
bicluster overlaps are revealed as edges from the same entities
connecting with different biclusters. To reduce edge crossings, in
the simplest case, we need to simultaneously organize elements in
three lists: a bicluster-list and two neighboring entity-lists. This is
challenging for two reasons. It requires sorting in a 3D space, if we
consider each list as an individual dimension. Moreover, positions
of elements in each dimension are constrained by positions of
elements in other dimensions, if our goal is to put biclusters and
their associated entities near each other. BiSet visually displays
the three lists in a linear manner: a bicluster-list in-between two
entity-lists. Thus, this problem can be viewed as sorting two pairs
of neighboring lists: a bicluster-list with its left neighboring entity-
list, and a bicluster-list with its right neighboring entity-list.

For each pair of lists, minimizing edge crossings by ordering
two lists is NP-hard [34], which needs heuristic solutions. Seri-
ation offers a possible solution [35]. As discussed before, seriation
has been used to reveal patterns in a matrix. With some heuristic
strategies to permute rows and columns, seriation attempts to order
elements in rows and those in columns in two sequences and the
combination of the two can reveal some patterns in the matrix [12].
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However, the above problem cannot be solved by simply applying
seriation to two pairs of lists respectively, since the bicluster-list
may have two different orders. One is from the seriation between
the bicluster-list and its left neighboring entity-list, and the other
comes from the seriation between the bicluster-list and its right
neighboring entity-list. Because of two different orders, how to
organize biclusters in this bicluster-list becomes a problem.

3.2 Bicluster-based Seriation Technique
We merge biadjacency matrices to enable seriation in a list-based
layout of bipartite graphs. These biadjacency matrices indicate re-
lationships between two partitions: entities and biclusters, instead
of an original bipartite graph between two sets of entities. This
approach is inspired by the design of data context map [36]. It
can display both data items and attributes in a 2D space based by
fusing four distance matrices, which include pairwise distance of
data items, attributes, attributes to data items, and data items to
attributes. Using a merged biadjacency matrix, the double orders
problem can be addressed, so it is possible to apply seriation to
multiple lists. Specifically, in this work, we use correspondence
analysis (henceforth, CA) to perform seriation.

3.2.1 Correspondence Analysis and Edge Crossings
In traditional application scenarios, CA is performed on a con-
tingency table [37]. Categorical values represented by rows (or
columns) of the table is characterized by frequency distributions
of the corresponding rows (or columns), which is called profile
in CA. CA finds a low dimensional subspace of the entire profile
space (e.g. a one-dimensional line or a two-dimensional plane),
which maintains the majority of dispersions of the original pro-
files [20]. If two profiles are close to each other in the original
profile space, they would also be close to each other in the
identified low dimensional subspace.

In the application of reducing edge crossings between paired
entity-bicluster lists, a pair of lists can be represented as a biadja-
cency matrix, which is binary. 1 indicates an entity is linked with
a biclsuter, while 0 means not. This matrix can be converted into
a contingency table, and the profiles used in CA for entities and
biclusters can be formulated. For two entities, if their connected
biclusters are almost the same, their profiles in CA would be
similar to each other. For two biclusters, if their associated entities
are almost the same, their profiles in CA are also similar and they
are close to each other in the profile space. By performing CA
on this biadjacency matrix, similar entities are grouped together
and close to each other on the axis identified by CA. Due to
the symmetric property of CA [20], with respect to rows and
columns of the contingency table, the corresponding biclusters on
its identified axis by CA are also grouped and follow the similar
order as that of entities. If we organize entities and biclusters in
lists respectively based on their corresponding orders from CA,
edge crossings between different groups of entities and biclusters
will be reduced, compared with a random arrangement of entities
and biclusters in the list.

3.2.2 Key Steps to Enable Seriation in Lists
This merged-matrices based seriation includes five key steps that
is summarized in Figure 2.

1) Biadjacency matrices preparation. Based on relations in
each pair of neighboring lists (an entity-list and a bicluster-list), we
get an adjacency matrix, where rows are entity IDs, and columns

Fig. 2. Five key steps of bicluster-based seriation in a bipartite graph: 1)
biadjacency matrices preparation, 2) matrices fusion, 3) seriation on the
merged matrix, 4) local order generation, and 5) visual mapping.

are bicluster IDs. Each cell in such matrices has a value of 0 or 1,
indicating whether an entity is connected with a bicluster. 1 means
that they are connected and 0 means that they are not.

2) Matices fusion. We merge these biadjacency matrices to get
a fused matrix, where rows are all entity IDs and columns are
all bicluster IDs from all paired neighboring lists in the previous
step. When an entity is not connected with a bicluster, we fill the
corresponding cell with 0.

3) Seriation on a fused matrix. We apply CA to this merged
matrix and get the seriated orders of entities and biclusters (as
global orders), respectively. Other seriation methods can also be
applied in this step. We choose CA for it can help to reduce edge
crossings, as discussed before, and it has been studied for bipar-
tite graph partitioning [38]. Moreover, based on implementations
in [39], CA is effective and reasonably fast.

4) Local order generation. We get local orders of entities in
entity-lists and local orders of biclusters in bicluster-lists based
on the two global orders. For the two seriated sequences of entity
IDs and bicluster IDs, we separate them into different entity-lists
and bicluster-lists respectively, by their types. In each entity-list or
bicluster-list, the order of entities or biclusters is determined based
on their global orders.

5) Visual mapping. In each entity-list, entities are displayed
by their local orders. In bicluster-lists, the position of biclusters
is determined by the average position of their connected entities.
This attempts to obtain symmetric layouts for biclusters and their
associated entities for readability and aesthetic purposes [40].

This fused matrices based approach enables applying seriation
to bipartite graphs (including multiple lists). If all pairs of neigh-
boring entity-lists and bicluster-lists are included, this approach
gives an organized layout for all entities and biclusters. If only
one bicluster-list and its two neighboring entity-lists are involved,
this approach gets an organized layout for these biclusters and
entities. For the same group of lists, the former potentially gets
an overall organized layout as an overview of the graph, while the
latter gives them an organized layout from a focused perspective.

The seriation approach can generate layouts with fewer num-
ber of edge crossings than the greedy approach used in BiSet [6].
The greedy approach orders biclusters by size, and then it assigns
orders to entities from the largest bicluster to the smallest one. If an
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Fig. 3. Three examples of organizing one bicluster-list and two entity-
lists with two approaches. (A), (C) and (E) present the greedy approach
result. (B), (D) and (F) show the proposed seriation approach result.

entity is linked with multiple biclusters, its position is determined
by the largest one. Finally, the position of biclusters is determined
by the average position of their entities. Figure 3 show examples of
organizing the same lists with the two approaches. Their detailed
information is summarized in Table 1. Entities include names,

TABLE 1
A summary of the three examples shown in Figure 3.

Example Number of edge / (entity
+ bicluster)

Number of Edge Crossing
bicluster entity edge greedy seriation reduced

(A), (B) 12 54 71 1.08 169 45 73%
(C), (D) 19 108 156 1.23 933 388 58%
(E), (F) 33 96 226 1.75 2421 1542 36%

locations, organizations and dates extracted from the Sign of the
Crescent dataset [1], and biclusters are computed by setting the
number of entities on one side as at least three. These examples
show that the proposed seriation approach can generate a layout
with fewer number of edge crossings. Also, it helps to address the
visual overlapping problem of biclusters (e.g., see many biclusters
overlap each other in (E)).

4 USER EXPERIMENT DESIGN RATIONALE

4.1 Research Questions
We aim to study the effect of two techniques, edge bundling (vi-
sualized as two rectangles indicating edge density), and seriation,
on sensemaking of biclusters in bipartite graphs. In order to fulfill
this, we need to compare user explorations in a bipartite graph with
these techniques to a graph without them. Since a bipartite graph
organize information in lists, we call a bipartite graph without
these techniques as a traditional list view and a graph using them
as an enhanced list view. We have the following three research
questions. The first one is a visual analytics oriented question, and
the other two are usability oriented questions.

Q1: How can computed biclusters that are visualized using one
or both of the two techniques, help users to find complex domain
specific biclusters?

Q2: Compared with a traditional list view (e.g., Figure 1 (A)),
does an enhanced list view with the two techniques improve user
performance in bicluster explorations?

Q3: Are there any trade-offs comparing a traditional list view
with an enhanced one by incorporating the two techniques for user
exploration of biclusters in bipartite graphs?

4.2 User Task Design
We designed user tasks as exploring two types of biclusters, closed
biclusters and merged biclusters. The former refers to biclusters
computed by algorithms. The latter are domain specific biclusters
that may consist information selected and merged from multiple
biclusters. Finding merged biclusters needs domain knowledge
that algorithms may lack (e.g., semantic meanings of entity labels).
However, users can fill in the gap by bringing their domain knowl-
edge to support merged biclusters discovery. The task of merged
biclusters discovery helps us to find answers to the first research
question. This also matches real-world application settings, where
relationships computed from datasets do not always exactly meet
user expectations, so they have to handle such results for analysis.
Moreover, user explorations of the two types of biclusters allows
us evaluating usability of the two techniques.

4.3 Factors Affecting Task Complexity
We identify three levels of factors that impact user task complexity.
They correspond to five-level relationships (entity, group, biclus-
ter, chain and schema) [41], involved in bicluster explorations.
F1. The entity and group level factor: entity number. The more

entities are, the more user effort it takes to investigate them.
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Also, the more entities belong to individual groups, instead
of biclusters, the more effort users may take to find biclusters.
They are considered “noise” for user explorations.

F2. The bicluster level factors: size, overlap and number. The
bigger a bicluster is, the more information it has, which takes
more user effort to explore and understand. The more biclus-
ters overlap each other by sharing entities, the more similar
biclusters are. This may need more user effort to discriminate
similar ones, and select or reorganize information in them.
Moreover, the more biclusters are in a dataset, the more effort
users take to check each of them and find meaningful one(s).

F3. The chain and schema level factor: domain number. The more
number of domains involved, the more information a dataset
may have, which may lead to longer bicluster-chains (e.g.,
those connecting more number of biclusters). This requires
more user effort for investigation.

These factors interleave with each other in complex correla-
tions. For example, the number of biclusters relies on a specified
bicluster size, for a given dataset. It is difficult to control or sepa-
rate factors for dataset generation. Moreover, there are no existing
guidelines for reasonably setting the factors and explaining how
they impact user task complexity. Since factors at the bicluster
level directly reveal the complexity of biclusters, we consider them
for dataset generation. In order to get an initial idea about user
performance corresponding to a certain setting, a pilot study is
necessary. Based on its results, we can further prepare datasets
with a reasonable setting for the primary user experiment.

5 PILOT STUDY

We conducted an informal pilot study with four volunteers, who
were all graduate students from a research university. The study
was performed on a 15.4-inch Macbook Pro with 2.3 GHz Intel
Core i7 processor and 16GB memory. The visualization was
displayed in Chrome, version 51 (64-bit), which fitted the entire
screen. All participants completed study tasks with a mouse and a
keyboard.

5.1 Data
We prepared the data by assigning small values to three factors at
the bicluster-level. Increasing their values leads to more difficult
tasks, so this setting helped us to identify a rough baseline of user
performance. We generated two datasets with identical complexity
and size. Each has two lists of entities (person and company), with
18 entities per list using different labels. Entities in each dataset
form 9 biclusters in total, and each entity belongs to at least one of
these biclusters. Moreover, these biclusters have 3 different sizes
(3 biclusters per size): 2×3, 3×3 and 3×2. While in real-world
applications, biclusters are computed in a larger size (e.g., 124
genes similarly behaved under 17 conditions for the Yeast and
Human B-cell Lymphoma data [42]), we pick such sizes as they
do not need much user effort to understand and have been used
in previous study [25]. We use three different numbers of shared
entities: 0, 2 and 4, corresponding to three bicluster overlap levels:
low, medium and high. The 9 biclusters are evenly assigned to
them by size. This assures that there are three different sized
biclusters in each overlap level. Each pair of biclusters in the
same overlap level share the corresponding number of entities.
Biclusters from different overlap levels do not share any entity.

In summary, each dataset has 36 entities from two domains
(person and company) and 53 individual relationships associated

with at least one bicluster. We avoided isolated entities (e.g., those
do not belong to biclusters), since they may increase user cognitive
effort of exploration.

5.2 Tasks
Each participant was assigned two tasks, finding people with
similar working experience, from the two generated datasets. The
expected answers should include at least three persons and at least
three companies, as evidence of their hypotheses. Entities in the
two datasets remain the same order (generated with random order-
ing), but assigned with different labels. The difference controlled
for the two tasks is the view. One used edge bundles (denoted
as pilot-WB). The other was without bundles (denoted as pilot-
NB). We did not test seriation in this pilot study. Compared with
orders from seriation, randomly generated orders may need more
effort and time for exploration, since entities associated with the
same biclusters may be separated. Due to this, users may have to
do more search with random orders. Thus, user performance with
random orders potentially gives us an “upper bound” about the
complexity of the current datasets.

We asked participants to find as many answers as possible,
without giving them a specific number of expected answers or time
limits. With this strategy, we wanted to explore when participants
would stop their analysis. After finishing a task, we reviewed their
findings with them and asked them to justify their answers.

5.3 Results
On average, for both views, all participants found four answers,
and the majority of these answers covered three closed biclusters,
sized 3× 3. It took participants almost twice amount of time, on
average, to finish the task in pilot-NB (about 9 minutes) than that
in pilot-WB. Moreover, most answers were closed biclusters. This
indicates that participants tended to stop analysis after getting all
three closed biclusters. Edge bundles directly show such biclusters,
so it is much easier for participants to find them.

Considering such time difference, the number of overlapped
biclusters might be too complex for the view without bundles.
The more biclusters overlap each other, the more complex related
entities are (e.g., more involved entities with more edges). This
leads to more user effort in explorations in the view without edge
bundles. In pilot-NB, users had to check individual relationships
to find an answer, because there were not obvious visual clues.
This suggests that the number of overlapped biclusters in current
datasets might be overbalanced for the two views.

Based on these results, we made two changes in the primary
study: dataset generation and task descriptions. The former aims
to balance datasets complexity for both views. The latter attempts
to persuade users to continue their analysis after finding all closed
biclusters. We posit that participants would explore more if they
could be directed with a more clear task description (e.g., giving
them the number of expected answers). With a longer period of
exploration, more insightful results may be covered by users [43].

6 PRIMARY EVALUATION

6.1 Participants and Apparatus
We recruited 20 graduate students (9 males and 11 females) from
our university, aged 24-33 (mean 28). Participants were from vari-
ous departments, such as business management, civil engineering,
computer science, food science and psychology. None of them had
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prior experience with biclusters. All participants had normal or
corrected-to-normal vision without color vision deficiency. Similar
to the pilot study, the primary study was performed on a 15.4-inch
Macbook Pro with 2.3 GHz Intel Core i7 processor and 16GB
memory. The visualization was displayed with Chrome, version 51
(64-bit), which fitted the entire screen. All participants completed
study tasks with a mouse and a keyboard.

6.2 Data

We use synthetic data in this study to ensure generalizability of the
results. We generate four datasets for four experiment conditions.
They have the same level of complexity based on size and graph
connectivity. Each contains two sets of entities. One entity-set is
people’s name, and the other set is organization, location, item, or
course. Combinations of the two entity-sets lead to four datasets.

Considering pilot study results, we reduce the number of bi-
clusters but increase their overlaps. The former attempts to balance
the complexity for both views, since it saves user effort and time
to find closed relationships. The latter increases the possibility for
users to explore information from multiple biclusters. Biclusters
have the same three sizes as those in the pilot study, and they have
three levels of overlaps: low, medium and high, corresponding to
sharing 1, 2 and 4 entities. In the pilot study, there were no answers
that consisted of information from biclusters without sharing any
entities, so we adjusted the low level of overlaps from 0 to 1.

For each dataset, we designed six expected answers. Two of
them are closed biclusters, and others are merged ones. Three of
the merged biclusters consist of two biclusters sharing 1, 2 or 4
entities. The other merged one comes from two biclusters without
overlaps. For example, two groups of people have similar working
experience at IT companies, although individuals may work at
different companies (e.g., Google, Microsoft and Facebook).

In summary, for the primary study, we generated four datasets.
Each has 58 entities with 83 individual connections in total, which
leads to 14 biclusters. The size of these datasets is about 1.5 times
larger than those used in the pilot study. This leads to the time for
a participant to finish one task about 20 minutes.

6.3 Task and Design

We conducted a within-subjects, 2× 2 factorial study with four
user tasks. The two key factors are view and entity order. The
former contains two levels: with edge bundles and without edge
bundles. The latter also has two levels: random order and seriated
order. Combinations of them lead to four experiment conditions.
For each condition, a user task is assigned with one generated
dataset. Considering the time cost, about 20 minutes per task (we
gave extra time, about 5 minutes, in case that participants needed
it), we do not replicate tasks for each experiment condition. The
four experiment conditions are summarized in Table 2. To avoid
order effects, the sequence of the four conditions is randomized.

The four user tasks are similar to each other, although different
labels are used. Specifically, they are to find people with similar:
• Working experience based on companies that they worked for.
• Travel preference based on their travel history.
• Shopping style based on their shopping records.
• Learning interests based on the courses they have taken.
We require that each finding should contain two sets of entities

(e.g., people and companies). The cardinality of each set should
be in the range from 3 to 6 (including boundaries). In addition,

TABLE 2
A summary of the four experiment conditions.

View Order Experiment Condition Code
No bundle Random NR

With bundle Random BR
No bundle Seriation NS

With bundle Seriation BS

different from the pilot study, we informed participants that there
were 6 expected answers for each task, but they were free to find
as many as they could. This attempted to avoid users stopping
their analysis after merely finding the two 3×3 sized biclusters.

We used the proposed seriation approach to generate seriated
orders for entities and biclusters. For random orders generation,
we arbitrarily shuffled entities in two entity-lists, and then deter-
mined the positions of biclusters by the average position of their
associated entities. In total, we generated 100 samples of such
random orders and randomly select one from them for both NR
and NS. Thus, entities in NR and NS have the same order based
on random ordering, while entities in BR and BS remain the same
order based on results of seriation.

6.4 Visualization and User Interaction
Figure 4 shows examples of visual layouts for the four conditions.
In the study, we used them with different entity labels. Moreover,
Figure 5 illustrates examples of three levels of bicluster overlaps.
Entities are displayed in left and right lists, with a small rectangle
on the left indicating its frequency. Edge bundles are displayed in
between the two entity lists, on top of which two round-cornered
rectangles are shown to reveal the density of entities of the bundles
on both sides, as the width of the two rectangles.

Related entities are highlighted with propagations when users
mouse over or select an entity. Two similar highlighting propa-
gations are used. In a view without bundles (Figure 6 (A)), after
hovering an entity in a list, connected entities in another list are
highlighted. Based on these highlighted entities, all other related
entities, in the same list with the hovered one, are also highlighted.
In a view with bundles (Figure 6 (B)), when hovering an entity,
its connected bundles are highlighted, and other entities associated
with these bundles are highlighted. The former applies an entity-
based highlighting propagation. The latter employs a bundle-based
one. Both reveal connections between two groups of entities, based
on a user-hovered entity. Moreover, when users hover or select a
bundle, its connected entities are highlighted.

6.5 Procedure
This study contained four parts. It began with a brief tutorial about
coordinated relationships, biclusters and edge bundling. Then we
used the two datasets of the pilot study to demonstrate the two
views with supported interactions. Second, as a training session,
participants were asked to find a 3× 3 bicluster from these two
views, and we resolved their questions, if there are any.

Then, participants were informed about task description. After
that, they worked on four tasks in a randomized sequence. Partic-
ipants had at most 20 minutes to finish each task, and a follow-up
10 minutes to review and justify their findings. Participants were
allowed to have a short break after finishing each task, if needed.
It took each participant about 2 hours to finish all tasks. Finally,
after they finished all tasks, we interviewed with them to learn
their analysis strategies, judgment of complexity of the four tasks,
and impact of edge bundle and entity order on their analysis.
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Fig. 4. Examples of visual layouts corresponding to the four experiment conditions in the primary study. (A): no bundle + random order (NR). (B):
no bundle + seriated order (NS). (C): with bundle + random order (BR). (D): with bundle + seriated order (BS).

6.6 Data Collection
Data were collected from interaction logs, screen recording, ob-
servations and interviews. We logged three types of interactions
during user analyses: mouse-over or out an entity or a bicluster,
selecting or unselecting an entity or a bicluster, and adding or
removing an entity to or from answers. For each interaction, four
key components were logged: time stamp, interaction type, target
object type (an entity or a bicluster), and target object ID.

6.7 Measures and Metrics
We measured user performance (for Q1 and Q2) in three aspects:
variance of findings, accuracy of findings, and exploration cost.

Variance of Findings. User findings include two types of
biclusters: closed biclusters and merged ones. They both indicate
coordinated relationships identified by participants for the given
tasks. Entities of a merged bicluster come from biclusters with
three levels of overlaps: high, medium and low, discussed before.
Thus, there are four possible types of biclusters in user findings.
The variance of them in user answers indicates user preference
of finding biclusters in different experiment conditions. There are
two possible metrics of this measure: percent and count for each
type of biclusters in user answers. Because Count may vary a lot
among participants (they were allowed to find as many answers as
they wanted), we used percent of the four types of biclusters for
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Fig. 5. Three levels of bicluster overlaps based on shared entities.

Fig. 6. Highlight propagation: entity-based (A) and bicluster-based (B).
Highlighted entities are colored in orange. A user hovered or selected
entity is marked with a blue border. Entities in the normal state are blue.

variance of participant findings.
Accuracy of Findings. Our designed answers serve as gold

standard answers for evaluating participant answers. We used
two rules to determine justified answers: 1) perfectly or partially
matching expected answers (e.g., a subset of an expected answer),
and 2) providing supportive evidence. If answers meet them, they
are justified. Two types of supportive evidence are acceptable:

Connection based envidence: If a graph connection is provided
(e.g., showing the connections between 3 people and 3 locations),
then a finding is counted as a justified one.

Inference based evidence: If inference based explanations are
provided (e.g., explaining that 3 people had working experience at
IT companies), then a finding is considered justified.

Similar to variance of findings, we used the percent of justified
answers as the metric to measure accuracy of participant findings.

Exploration cost. We used entity visits and time to evaluate
participant exploration cost. The former refers to users interacting
with entities during explorations, which indicates their interaction
effort. A specific metric for entity visit is the number of visited
entities per justified answer. Similarly, for time, we used the time
cost per justified answer as its metric. Unjustified answers may
result from random entity selections. Thus, it cannot reasonably
reflect user effort on explorations. Additionally, total number of
justified findings may vary among participants. The more justified
answers are, the more effort users may take. Thus, we decided to
use the two metrics by considering per justified answer.

6.8 Hypotheses
We made the following eight hypotheses about user performance
of bicluster explorations. Specifically, H1 and H2 measure perfor-
mance by variance of findings; H3 and H4 evaluate performance
from the perspective of accuracy; and H5-H8 consider perfor-
mance from the perspective of exploration cost.

TABLE 3
Results of interaction test between the two factors, view and order, for

the four types of biclusters in participant findings.

Bicluster Types in Participant Findings Results of interaction test
F(1,18) p Significant

Closed biclusters 0.266 .612 No
Merged biclusters: high-level overlaps 1.542 .230 No
Merged biclusters: medium-level overlaps 0.018 .895 No
Merged biclusters: low-level overlaps 0.629 .438 No

H1: With the same order, we expect that user findings are more
likely to include closed biclusters when using edge bundles
than without bundles. Bundles explicitly reveal closed biclus-
ters, so it is easier for users to find them than merged ones.

H2: With the same order, we expect that edge bundles may lead
to user finding more merged biclusters, from biclusters with
higher overlap-levels, than that without bundles. Bundles help
to reveal overlaps between biclusters. Users are more likely
to merge biclusters with higher level of overlaps.

H3: With the same order, comparing a bundle-enhanced list view
with a traditional one, we expect that participants find more
justified answers, since bundles group some entities together.

H4: We expect that more user justified answers with seriated order
than random order, with the same view. The former tries to
place entities of the same bicluster(s) near each other, so it is
more likely for users to find similar entities and group them.

H5: With the same order, it takes users fewer entity visits to get
justified answers with bundles than without bundles, because
edge bundles help to reveal entity coalitions.

H6: With the same view, compared with random order, we expect
that it takes users fewer entity visits to find a justified answer
using seriated orders. After seriation, similar entities (based
on their associated biclusters) are listed near each other, so it
is easier for users to find similar ones.

H7: With the same order, we expect that users take less time to
get an answer using bundles than without bundles.

H8: With the same view, we expect that it takes users less time to
find an answer when using seriated order than random order.

7 USER PERFORMANCE RESULTS

We did 2-way repeated ANOVAs for testing the hypotheses. For
assumptions of the ANOVA, we performed Shapiro-Wilk test and
Mauchly’s test to verify normality and sphericity of collected data,
respectively. Two independent variables are view (with bundles
vs. without bundles), and order (random order vs. seriated order).
Dependent variables are those metrics discussed in Section 6.7.

7.1 Variance of Findings (H1 & H2)
For each type of biclusters, we checked the interaction between
view and order. We found no significant interaction (see Table 3).
Moreover, we checked the impact of bundles on the four types of
biclusters in participant findings, shown in Figure 7.

With the same order, we found a significant impact of bundles
on closed biclusters (F(1,18) = 4.929, p < .05), merged biclusters
with medium-level overlaps (F(1,18) = 10.892, p < .05), and low-
level overlaps (F(1,18) = 10.648, p < .05). We performed post-hoc
Tukey’s tests (pairwise comparisons) and found that using bundles
leads users to discover more closed biclusters than without bundles
only for the random order group. Thus, H1 is conditionally sup-
ported. Bundles reveal closed biclusters by linking their entities,
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Fig. 7. A summary (mean) of the percent of the four types of biclusters in participant findings, with error bars indicating the standard deviation.

so it is easier for users to find them than without bundles. Seriated
order organizes entities of the same biclusters near each other. This
helps users to find closed biclusters by checking nearby entities, so
the effect of bundles for the seriated order group is not significant.

For merged biclusters with medium-level and low-level over-
laps, post-hoc tests reveal that using bundles leads to the increase
of the former but the decrease of the latter for both random orders
and seriated orders. We can also see this in Figure 7 (C) and
(D). Thus, H2 is supported when considering the medium and low
overlap levels. Bundles may promote user awareness of computed
entity groupings and lead them to investigate bicluster overlaps
for finding answers. Without bundles, users had to manually find
groupings. Lacking grouping information, participants may simply
select entities that come from biclusters with a low overlap level.

For merged biclusters with high-level overlaps, we found no
significant effect of edge bundles (F(1,18) = 3.761, p= .068> .05),
with the same orders. When users select an entity, there are fewer
number of entities highlighted for high-level overlapped biclusters
than medium and low overlap levels. Because of fewer highlighted
entities, it took participants less effort to check them, even when
they are not near each other. Thus, merged biclusters with the high-
level overlap in participant findings vary slightly between using
bundles and without bundles for the random order condition.

With seriated orders, entities of the same biclusters are located
near each other. However, without bundles, participants still need
to manually check and select from neighboring entities to form
groups. This takes more effort than using bundles, which explains
the smaller mean of NS than BS. When entities of the same biclus-
ters are near each other, their connecting edges spread less. This
makes following edges more difficult, especially without bundles,
so the mean of NS is smaller than that of NR, in Figure 7 (B).
However, using bundles, when related entities are neighboring,
participants may be easier to explore overlaps between biclusters.
Thus, the mean of BS is larger than that of BR in Figure 7 (B).
Since edge bundling has no effect on merged biclusters with high-
level overlaps, H2 is rejected, when comparing the high overlap
level with the medium or low level.

7.2 Accuracy (H3 & H4)

For testing hypotheses, H3 and H4, we checked the interaction
between the two factors, view and order, and found no significant
interactions between them (F(1,18) = 0.228, p = .639). In addition,
we checked the effect of the two factors, respectively.

With the same order, of all the participant’s answers, there are
more justified ones, using bundles than without bundles. We found

Fig. 8. A summary (mean) of the percent of justified answers in partici-
pant findings, with error bars indicating the standard deviation.

a significant effect (F(1,18) = 14.805, p < .05) of view on justified
user answers. Post-hoc Tukey’s tests indicate that using bundle
leads to more justified answers than without bundles for both the
random order group and the seriated order group. Moreover, based
on Figure 8 (A), on average, there are more justified answers in
BR and BS, compared with NR and NS, respectively. These results
support H3, which means that bundles lead to participants getting
more justified answers.

Comparing results from the same view but with different
orders, (NR, NS) and (BR, BS), shown in Figure 8 (B), the percent
of justified answers do not vary significantly. We found no effect
(F(1,18) = 0.041, p = .842) of order on justified answers. These are
against H4, which indicates that with the same view, order does
not significantly impact participants getting justified findings.

7.3 Entity Visits (H5 & H6)

For testing hypotheses H5 and H6, first we found no significant
interactions (F(1,18) = 0.370, p = .551) between the two factors,
view and order. Then, we checked the effect of them respectively.

With the same order, participants visited fewer entities to get a
justified answer, when using bundles than without them. We found
a significant impact (F(1,18) = 18.410, p < .0001) of view on num-
ber of visited entities for justified answers. Post-hoc Tukey’s tests
show that using bundles leads to fewer entity visits than without
bundles for both random orders and seriated orders. Additionally,
based on Figure 9 (A), comparing results of the two pairs, (NR,
BR) and (NS, BS), we can find that the mean of the number of
visited entities per justified answer is smaller with bundles. These
support H5. Edge bundles reveal entity groupings, so participants
do not have to repetitiously check entity connections. Thus, they
investigated fewer number of entities to find justified answers.
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Fig. 9. A summary (mean) of the number of visited entities per justified
answer, with error bars indicating the standard deviation.

Fig. 10. A summary (mean) of time cost (seconds) per justified answer,
with error bars indicating the standard deviation.

Similarly, with the same view, seriated ordering reduces entity
visits for participants to find justified answers. We found order has
a significant effect (F(1,18) = 19.464, p < .0001) on the number of
visited entities for justified answers. Post-hoc Tukey’s tests reveal
that there are fewer entity visits using seriated order than random
order for both using bundles and the without bundles. In addition,
comparing the results of two pairs, (NR, NS) and (BR, BS),
shown in Figure 9 (B), we can find that participants visited fewer
number of entities to get justified answers, with seriated orders
than random orders. These support H6. Seriated ordering attempts
to organize entities, associated with the same bicluster(s), near
each other, so participants are more likely to find related entities
by exploring entities around previously investigated ones. With
random orders, they may have to search and check more entities
before they identify useful ones for grouping. This explains the
fewer number of visited entities with seriated orders.

7.4 Time Cost (H7 & H8)

The time costs per justified answer in different experiment con-
ditions are similar, shown in Figure 10. We found no effect of
view (F(1,18) = 1.735, p> .05) and order (F(1,18) < 0.0001, p> .05)
on the time cost. Moreover, we found no significant interaction
between the two factors (F(1,18) = 0.24, p = .63). These reject H7
and H8. Thus, neither edge bundling nor seriated ordering helps
to reduce the time cost for users to find justified answers.

Layout interpretation may explain this. Bundles reduce entity
visits by showing their coalitions. However, participants still need
enough time to understand computed groupings (e.g., the category
of companies). Such interpretations help them to further decide
entities as findings. In addition, people tend to organize similar
information spatially near each other [44]. Seriated ordering or-
ganizes entities based on graphic connections, so entities spatially
close to each other are those with similar connections. However,
similarity determined by graph connection may not always match

their semantics (e.g., meanings of entity labels). If the two conflict,
participants may take more time to understand relations of entities
associated with bundles, before finally grouping some entities.

7.5 Summary of Performance Results
In summary, H3, H5 and H6 are supported, while H1 and H2
are conditionally supported. H4, H7 and H8 are rejected. Bundles
significantly reduce entity visits (H5) and lead to more justified
answers (H3), under the same order condition. Besides reducing
entity visits (H6), order has no effect on answer accuracy and
time cost. Moreover, bundles lead users to discover more closed
biclusters (H1, with random orders), and more merged biclusters
that consist of information from biclusters whose level of overlaps
falls below a certain threshold (H2, medium-level and low-level
overlapped biclusters). Neither bundles nor seriated orders impact
the time cost of finding justified answers. This implies that other
factors (e.g., layout interpretation) may affect the time cost, beside
entity visits. These results answer Q2.

8 FOUR TRADE-OFFS

8.1 View Simplicity vs. Task Complexity
Subjective judgement of task complexity does not always match
view simplicity. Edge bundling reduce visual clutters, and seriated
ordering organizes similar information spatially near each other.
They attempt to get clearer views from a perspective of simplicity.
With them, the number of edge crossings is reduced. Following
this rationale, BS is the easiest condition, while NR is the hardest
one. However, based on the interview feedback, only 7 of all the
20 participants agreed that BS was the easiest and NR was hardest,
although 17 participants reported that tasks with edge bundles
were easier than those without bundles.

For participants who completely or partially disagreed with
the task complexity discussed above, the majority of them (over
50%) voted BR as the easiest condition and considered NS as the
hardest one. They thought that there were fewer edges in BS than
in BR and the same case with NS and NR. This indicates that with
the same view, seriated ordering leads to perceptual illusions on
fewer edges. In fact, all four tasks have the same number of edges.
These participants thought it was harder to group entities with
fewer edges. For example, P6 said, “...[compared with BR], there
are fewer edges [in BS], so it is harder for me to make decisions
[on grouping entities]...”, and P11 mentioned, “...[compared with
NR], the graph [in NS] is sparse [with less connections]. It is more
difficult to work with a sparse graph...” The claim, “fewer edges
(or connections)”, indicates that they thought the view got simpler,
but fewer connections, for them, indicates a smaller likelihood of
finding possible answers.

View simplicity leads to a perceived data reduction. This seems
to further reduce the user perceived opportunities to find answers.
However, in fact, the task complexity does not increase, comparing
seriated order with random order for the same view, since the
number of edges does not change. Due to this perception illusion, a
simpler view may lead to an increase of perceived task complexity.

8.2 Similarity: Connection-based vs. Semantic-driven
Similarity of entities can be determined from two aspects: connec-
tion or semantic. Connection based similarity means that entities
are associated with the same bicluster(s), so they have similar con-
nections with other entities. Semantic oriented similarity indicates
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Fig. 11. An example of unreasonably justified answers in NS and BS.
The selected entities are those inside the blue dotted boxes.

that the meanings of entity labels are similar (e.g., IT companies).
In lists, entities similarity is revealed by spatial proximity.

Participants tend to be misled by spatial proximity of entities
and make unreasonable decisions. One common type of unrea-
sonably justified findings is simply merging entities spatially near
each other. Half of the 20 participants submitted an answer in NS,
shown in Figure 11, which aggregated two groups of entities on the
bottom of two lists. When reviewing this answer, they could not
give an reasonable explanation (from a semantic perspective). One
popular explanation from them is “...they are near each other, and
[when hovering Eric King] they all highlight...” This indicates that
they did not pay enough attention to these entity labels for getting
this finding, which result from spatial proximity of these entities.
Participants can perceive such spatial proximity. For example, P5
stated, “...entity orders [in NS] seems telling me something...[when
hovering entities], highlight ones are almost aligned horizontally.”
Based on this, P5 got this answer. However, in NR, for the same
group of entities, 3 participants chose them as a finding, which is
smaller than 10 participants in NS.

Seriated ordering leads to a layout, where spatial proximity
reveals graph connection-based similarity. Neighboring entities are
potentially associated with the same biclusters. These biclusters
may have different meanings. Due to this, layouts with seriated
orders cannot map semantic level similarity between entities to
their spatial proximity. However, semantic level similarity is a key
factor that may impact how users organize information. If entity
similarities at the two levels are not consistent, participants may
get unreasonable answers. Using bundles helped this (for Q1).

It is hard to simultaneously reveal entity similarity at both con-
nection level and semantic level by only using spatial proximity.
Edge bundles can help, because they visually reveal groupings.
Corresponding to the unreasonable finding in NS, for the same
group entities in BS, shown in Figure 11, two of the 20 participants
picked them as a finding. Groupings, revealed as bundles, may lead
participants to consider meanings of entity labels. This helps to
avoid simply merging entities, spatially near each other, together.

8.3 Connectedness vs. Coordinatedness
Two important aspects of entity coalitions are revealed by different
views: connectedness and coordinatedness. The former means
how entities are overall connected (e.g., strong, weak, or isolated),
while the latter means how entities are specifically grouped. Thus,
connectedness emphasizes a graphical perspective of entity coali-
tions, while coordinatedness focuses on the meaning of groupings.

Participants show different perception emphasis for different
views. In NR and NS, participants tend to emphasize the perceived

connectedness of entities; while using bundles (BR and BS), they
tend to perceive coordinatedness of entities (for Q1). We observed
this when participants explained their findings. Figure 12 shows
an example of two findings with different perception emphasis.
Entities with blue boxes in the left list and those with black border
in the right list are those selected in findings.

Compared to individual edges, edge bundles reveal the coordi-
natedness of entities at the cost of perceived connectedness. When
explaining findings, participants tended to use words, “strongest or
stronger connections”, in the view without bundles. This conveys
their perceived entity connectedness. For instance, P11 explained
the finding shown in Figure 12 (A), as “...this group shows the
strongest connection between three people with research university
and big IT companies...” In fact, 9 participants mentioned these
words when explaining findings in NR and NS, but none of them
were mentioned in BR and BS. In BR and BS, 7 of the 9 participants
addressed their perceived entity coordinatedness by changing to
use number. For example, P12, P17 and P20 explained the answer
shown in Figure 12 (B), as “...they [3 selected people] all visited
2 of the 3 Disney parks...” However, no participants used number
to explain their findings in NR and NS.

Comparing different ways of explanations, a list view without
edge bundles helps participants to perceive entity connectedness.
In a view with edge bundles, it is easier for users to learn entity
coordinatedness. This indicates that edge bundles are better for
coordinatedness oriented tasks (e.g., finding three people who all
visit four locations), while a list view without bundles better fits
connectedness oriented tasks (e.g., finding the strongest connec-
tions between people and locations).

8.4 Highlight Propagation Driven by: Entity vs. Bundle

The entity-based highlight propagation leads to participant deictic
gestures during their analysis process. Seven participants in NR
and NS used fingers to point at certain entities on the screen.
Three of them used more than one finger to point at two or
three highlighted entities, while others used one finger, pointing
at a selected entity, and moved the mouse pointer following the
edges from this entity. The latter indicates that they tried to check
connections from a selected entity, and they used one finger as
an additional marker for this selected entity. If multiple entities
are selected, especially when near each other, additional markers
may be needed. The former, using multiple fingers, indicates that
participants attempted to explore coordinatedness of highlighted
entities. Entity-based highlighting propagation do not reveal coor-
dinated connections, so participants have to manually check them.
However, if they selected the entities pointed by fingers, additional
entities would be highlighted. In this case, they would lose the
current view of highlighted entities. Thus, they used fingers to
help remember these entities for further exploration.

Such physical interactions were not observed in the view with
bundles, BR and BS. This suggests that bundles may help users re-
member a group of entities. Six participants used the word, “power
strip”, to depict the role of edge bundles, which helped them find
and retrieve a group of connected entities from two lists. Thus,
even multiple groups of entities are highlighted, participant can
use bundles to distinguish different groups. Since bundles work
as additional visual markers, they did not use fingers during their
explorations in BR and BS. Considering user physical interactions,
for the view with entity-based highlighting propagation, additional
visual markers or extra highlighting mechanisms may be needed.
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Fig. 12. An example of findings with different perception emphasis in their explanations. (A) shows an answer in NR, explained with emphasis on
entity connectedness. (B) presents a finding in BR, with a coordinatedness oriented explanation.

9 DISCUSSION

We evaluate edge bundling and the proposed seriation technique
for sensemaking of biclusters in bipartite graphs. With the same
order, edge bundles can lead to more justified findings with fewer
entity visits. With the same view, seriated order takes fewer entity
visits for users to find justified answers. These answer Q2. We have
identified four key trade-offs regarding using the techniques (Q3).
Such results suggest that edge bundling is critical for exploring
bicluster in bipartite graphs, which promotes user awareness of
the meanings of entity labels (Q1).

9.1 The Role of Edge Bundling
Complex tasks may not be directly solved by computation. Human
effort remains necessary (e.g., users select and merge information
from biclusters to get answers). While computed biclusters reveal
some patterns of data, they cannot cover all answers of complex
tasks. However, computed entity coalitions can still benefit users
in exploring biclusters, by enabling them to see entity groupings
as edge bundles and reducing entity visits to find answers.

Besides data pattern discovery, another key role of computa-
tion for visual analytics is to free users from low-level perceptual
problems and support making high-level inferences. Based on
the study results, individual edges are bundled based on computed
biclusters. The bundles reduce user effort of entity visits to explore
biclusters and increase justified answers. Moreover, edge bundles
help users overcome perceptual problems caused by spatial prox-
imity of entities, which helps to prevent them from making wrong
judgements and being misled by spatial closeness, and leads them
to consider the meaning of entity labels for high-level inference
(e.g., identifying a group students as HCI students based on the
courses taken). Such benefit make it critical to use edge bundling
for supporting sensemaking of biclusters in bipartite graphs.

9.2 Implication for Tools of Visualizing Relations
Edge bundling empowers applications that visualize relationships
for sensemaking tasks (e.g., Jigsaw [45]). Individual edges present

simple relationships between entities, but they lack the capability
to show entity coalitions (e.g., connected groups of entities), due
to missing visual marks to reveal groupings. While highlighting
helps to reveal entity groupings, it cannot serve as a handler that
enables direct manipulation on groups of entities (e.g., dragging
and moving them). Based on study results, besides enabling users
to see entity groupings, edge bundles help them overcome percep-
tion problems and make high-level inferences. Additionally, edge
bundling can be applied to variant layouts, not limited to bipartite
graphs, so it is flexible enough to be applied to reveal groupings
between different visualizations (e.g., connecting geolocations in
a map and points in a scatterplot). Thus, edge bundling offers a
good solution to support exploring complex relations,

The trade-offs indicate three key considerations to apply edge
bundling and seriation for sensemaking of biclusters in bipartite
graphs: 1) user-controlled dynamic ordering, 2) task-driven layout
selection, and 3) coordinatedness highlight. Instead of using static
orders, enabling users to dynamically organize entities and biclus-
ters is useful to support analysis, because a simple layout does
not always lead to a perceived simple task. Besides this, it is hard
to encode both semantic oriented similarity and connection based
similarity with one spatial order, so dynamic ordering allows users
to explore data from different perspectives. Moreover, different
representations may fit different user tasks. For coordinatedness
oriented tasks, edge bundles work better, while for connectedness
oriented tasks, a view without bundles may lead to better results.
However, if users have to deal with both types of tasks, enabling
them switch representations is a possible solution. In this case, we
may consider adding coordinatedness oriented highlighting to the
view without bundles, or enabling users to switch from individual
edges to bundles (for the groups of entities under investigation),
and vice versa. This helps to reveal both coordinatedness and con-
nectedness of entities, without costing extra physical interactions
(e.g., pointing at entities with fingers).

The size and density of a bipartite graph impacts user explo-
ration of biclusters and visualization design. The larger a bipartite
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graph is, the more entities it has. Users have to check more entities,
especially considering cases of merged biclusters discovery. As the
number of entities increases, lists grow, so it takes more user effort
for navigation. Moreover, given a bipartite graph with a fixed size,
its density impacts the number of computed biclusters. The more
dense a graph is, the more biclusters may be mined from it, and the
more edges in a list-based layout. While edge bundles can help to
reduce the number of edges that are displayed, a larger number of
biclusters takes more user effort (e.g., investigating more entities).
In some extreme cases, a layout with edge bundling and seriated
ordering may remain cluttered. For such cases, other visual repre-
sentations (e.g., matrix) should be considered. Furthermore, when
edges are modeled with probability as real numbers, instead of a
binary fashion (i.e., 0 or 1), matrix and other visualizations (e.g.,
BiDot [46]) can better reveal this than a list-based layout.

9.3 Study Limitations

This study does not investigate other bipartite graph visualizations,
such as matrix based visualizations that can reduce visual clutters
(e.g., edge crossings) for datasets with dense entity-connections.
Reordering a matrix and highlighting its cells of biclique structures
can also support exploring biclusters, so a comparative study with
matrix based visualizations helps to validate findings of this study.

As the first attempt to evaluate the usability of edge bundling
and seriation for sensemaking of biclusters in bipartite graphs, we
used a fixed setting. Due to lacking existing guidelines, we did a
pilot study to determine a setting of size-related factors, discussed
in Section 4.3, which can impact task complexity. Because we
did not used variant settings, how well the two techniques work
for data with different sizes remains unclear. Also, some factors
depend on others (e.g., bicluster number and overlap level rely on
size). A systematic way of designing various levels of these size-
related factors for future studies still needs exploration. Moreover,
datasets used in our study is relatively small, which cannot match
the size of data in real world. Thus, a study with real-world data
is worthwhile to further validate findings of this study.

The total number of participants is relatively small, which may
impact results, especially performance related findings. While this
study steps first toward a better understanding of the effect of edge
grouping and ordering on exploring biclusters in bipartite graphs,
a study with more subjects can further verify our results, and may
lead to deeper findings. Moreover, considering the tested number
of hypotheses, studies with more subjects remains needed.

Familiarity with entity labels may impact study results. While
task orders were randomized, we did not change the combination
between datasets and experiment conditions. This leads to a fixed
task domain for each condition. Participants were assigned tasks
with a random order, but they may be more familiar with labels in
one dataset than those in another. This may impact study results.
In order to gain a better understanding the impact of familiarity
with entity labels on user performance, further studies is needed.

Two similar highlight propagations, entity-based and bundle-
based, used in this study, attempt to reduce user effort in checking
entity groupings. As they are associated with two views, with and
without bundles respectively, we did not consider them as another
factor. They may impact user performance in exploring biclusters.
However, if we used static visualizations without any highlighting
techniques, we expect that users would perform better when using
edge bundles and seriation than without them, because they help to
reduce the number of edge crossings. Without highlighting, users

have to trace edges to find biclusters. A larger number of edge
crossings would take users more effort to trace edges. Moreover,
if highlighting was considered as another factor, it should be
combined with other factors for the study design. This would result
in some experiment conditions as using a view with edge bundles
and entity-based highlighting or a view without edge bundles but
using bundle-based highlighting. For such conditions, highlighting
techniques do not match layouts, so they may confuse users. Thus,
considering these two situations, instead of ignoring highlighting
technique, or simply treating them as a third factor, a reasonably
consistent way of entity highlighting between two views (with and
without edge bundles) still needs exploration. Based on this, we
can further verify findings of this study, and evaluate the effect of
different highlighting techniques.

10 CONCLUSION

In this work, we propose a bicluster-based seriation technique that
can help to reduce edge crossings in bipartite graphs drawing. We
conduct user experiments to study the effect of edge bundling and
seriation on sensemaking of biclusters in bipartite graphs. Results
of our study suggest that edge bundling is critical for exploring
biclusters in bipartite graphs by reducing entity visits, leading to
more justified answers, and overcoming perception problems. We
have also identified four trade-offs that lead to useful implications
for visualizing relationships to support sensemaking tasks. These
results are a significant step toward an in-depth understanding of
the two techniques for sensemaking of biclusters.
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