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Evaluating Effects of Background Stories on
Graph Perception
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Kangyi Chen, Xin Zhao, Chunyao Zhu and Wei Chen

Abstract—A graph is an abstract model that represents relations among entities, for example, the interactions between characters in a
novel. A background story endows entities and relations with real-world meanings and describes the semantics and context of the abstract
model, for example, the actual story that the novel presents. Considering practical experience and prior research, human viewers who are
familiar with the background story of a graph and those who do not know the background story may perceive the same graph differently.
However, no previous research has adequately addressed this problem. This research paper thus presents an evaluation that investigated
the effects of background stories on graph perception. Three hypotheses that focused on the role of visual focus areas, graph structure
identification, and mental model formation on graph perception were formulated and guided three controlled experiments that evaluated
the hypotheses using real-world graphs with background stories. An analysis of the resulting experimental data, which compared the
performance of participants who read and did not read the background stories, obtained a set of instructive findings. First, having
knowledge about a graph’s background story influences participants’ focus areas during interactive graph explorations. Second, such
knowledge significantly affects one’s ability to identify community structures but not high degree and bridge structures. Third, this
knowledge influences graph recognition under blurred visual conditions. These findings can bring new considerations to the design of
storytelling visualizations and interactive graph explorations.

Index Terms—Graph visualization, node-link diagram, storytelling, evaluation.
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1 INTRODUCTION

A graph is an abstract model that represents relations among
entities [50], [73]. They can often be found in various real-

world applications, such as social networks [37] and computer
networks [48]. In general, graphs can be analyzed from either a
theoretical or applied perspective because intrinsic connections
exist between abstract graphs and real-world graph data (e.g., high
degree nodes in graph theory or influencers in social networks).
Such connections are established through background stories that
endow entities and relations with real-world meanings and describe
the semantics and context of abstract graphs. For example, the
graph in Figure 1 shows the relationship network of characters in
the Game of Thrones novel [16]. The novel describes a story in
which characters from the Sunset Kingdom launched into arduous
journeys and built intertwined relationships after the king died in
an accident.

Graph perception is an essential part of graph analysis [46],
[70], in which human viewers explore graph structures of interest
and study their meanings through a graph visualization, e.g., a node-
link diagram. Does a graph’s background story affect a viewer’s
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Fig. 1. Scenario of an UBSer (a) and FBSer (b) perceiving the same
graph. The viewer in (a) is a learner of graph theory, who is not informed
about the real-world meanings of the graph and perceives the graph
from a theoretical perspective. The viewer (b) is a reader of the Game
of Thrones novel, who knows that the graph presents the relationships
of characters in the novel and perceives the graph from an applied
perspective. The two viewers have different focus areas of interest while
perceiving the graph.

perception? The answer may be yes based on our experience
and prior research. The viewers who are unaware of the back-
ground story (i.e., UBSers) and the ones who are familiar with
the background story (i.e., FBSers) may perform differently when
perceiving the same graph. For example, the UBSer in Figure 1(a)
is attracted to the community structures in the graph, whereas
the FBSer in Figure 1(b) is seeking the nodes that represent the
protagonists in the background story. Some psychological studies
have demonstrated that personal knowledge can affect the focus
areas and comprehension of viewers on paintings or artwork [47],
[66], [84], which motivates our work.

Graph perception has been the subject of extensive research
[36], [70], [77]. Some inherent laws of visual perception, such



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

as pre-attentive processing [82] and the Gestalt laws [15], have
been used to guide the visual encodings of node-link diagrams to
facilitate graph perception. Many aesthetic metrics [64] and shape
constraints [80] have been proposed for graph layout optimizations
to improve the readability of node-link diagrams. Some techniques,
such as fisheye interactions [81] and animations [39], utilize the
visual context information of target nodes or structures to promote
graph perception. Although graph data repositories, such as Pajek
[11] and UCINET [12], provide graphs and background stories, lim-
ited research has systematically studied the effects of background
stories on graph perception.

To address this gap, this research investigates the effects of
background stories on graph perception. We formulated three hy-
potheses: (H1) background stories can affect the visual focus areas
of viewers during interactive graph explorations; (H2) background
stories can affect the performance of viewers when identifying
specific graph structures, including high degree nodes, bridges,
and communities; and (H3) background stories can help viewers
construct stable mental models for graph recognition under difficult
visual conditions. The three hypotheses covered open-ended (H1)
and target-given (H2) perception tasks, as well as visceral (H1),
behavioral (H2), and reflective (H3) levels of graph perception
[15], [59]. Twelve real-world graph data sets with accompanying
background stories were chosen as the experimental data and
were used within three controlled between-subject experiments
with 70 participants (i.e., 35 UBSers and 35 FBSers) to test these
hypotheses.

In the experiments, the areas of interest (AOIs) that were
interactively selected by the participants, as well as the accuracy
and time taken to identify structures and recognize graphs, were
recorded. We designed three similarity indicators to quantitatively
measure the differences of AOI selections between the FBSers and
UBSers. We also conducted a series of significance analyses to
understand the significant differences between the performances
of the FBSers and UBSers in structure identification and graph
recognition. In addition, we collected the opinions and feedback of
the participants for qualitative analysis. The results found that back-
ground stories: 1) affected the visual focus areas of the participants,
2) significantly affected the performance of the participants when
identifying community structures but not high degree and bridge
structures, and 3) influenced graph recognition under difficult visual
conditions.

In summary, this research presents the first attempt to evaluate
the effects of background stories on graph perception. It contributes
three experimental methodologies, a series of instructive findings,
and a set of prepared graph data with accompanying background
stories. This research provides new insights into the inherent
laws of graph perception and brings new considerations into the
design decisions of storytelling visualizations and interactive graph
explorations. In addition, this research should inspire researchers
to investigate the effects of background stories or other personal
knowledge on the visual perception of abstract data models, such
as trees, tabulations, or trajectories.

2 RELATED WORK

2.1 Graph Visualization
Graph visualization has long been an active research topic [25],
[41], [44], [45]. Node-link diagrams are a popular graph visualiza-
tion method due to their prominent superiority in visual perception
and interactive analysis [55]. However, their main limitation is

that visual clutter often occurs when visualizing a massive graph
[38]. Many methods have been proposed to address this issue.
Graph reduction methods, such as clustering [10], filtering [49],
and sampling [87], [90], [91], [93], reduce the size of a graph for
the easy perception of important structures. Advanced layout [5],
[29], [94] and edge-bundling algorithms [34], [75] optimize the
spatial arrangement of nodes and edges to reduce visual clutter.
Interactions, such as zooming and panning [31], help users observe
local details. In addition to these methods, the inherent laws of
graph perception have been studied to provide a guideline for
node-link diagram design. Our work belongs to this category.

2.2 Graph Perception
There are three perception levels that existing graph perception
studies focus on, i.e., visceral, behavioral, and reflective. These lev-
els are based on the work of Norman [63] and the recommendation
of Bennett [15].

The visceral level of graph perception is one where human
viewers form first impressions about graph visualizations and then
identify prominent visual features by intuition [15]. Two important
perception theories, namely, pre-attentive rules [82] and Gestalt
laws [15], work at this level. Ware et al. [82] demonstrated that
using the pre-attentive rules to encode graph features can help
viewers quickly distinguish these features in node-link diagrams.
Marriott et al. [59] confirmed that if graph layouts take full account
of symmetry and continuity rules in the Gestalt laws, then viewers
can form deep impressions on graph structures.

The behavioral level of graph perception is related to the
identification of meaningful graph structures [15]. The readability
of graph layouts has been found to have a strong impact on structure
identification. Many measurable metrics have thus been proposed to
evaluate readability. For example, Purchase et al. [64] proposed the
metrics of edge crossings and edge bends to measure the aesthetic
readability of graph layouts. Dunne et al. [28] proposed the node
occlusion and group overlapping metrics to identify problematic
visual shapes. Taylor et al. [74] designed the homogeneity and
concentration metrics to measure the usage of display areas in
node-link diagrams.

The reflective level emphasizes the understandability of vi-
sualizations [15]. To achieve this goal, viewers are required to
obtain and utilize context information sufficiently. Psychological
researchers [30] have divided contexts into displayed and non-
displayed ones. Displayed contexts are visual features that are
presented on the screen but are not target features. Previous studies
have found that displayed contexts can help viewers understand
target structures in node-link diagrams. For example, Fisheye
interactions magnify displayed contexts around target structures for
graph perception [81]. Gorochowsk et al. [39] found that relatively
stable substructures at certain spatial positions can help viewers
perceive graph changes. However, to the best of our knowledge,
limited work has been conducted to systematically investigate
the effects of non-displayed contexts on graph perception. The
background story of a graph is a non-displayed context.

2.3 Visual Perception with Non-displayed Context
Non-displayed contexts refer to the invisible knowledge and experi-
ence of viewers [59], [66]. Some psychological studies have shown
that knowledge and experience can affect the visual perception of
pictures and artwork. In terms of knowledge, Rahman et al. [66]
found that knowledge can shape perception by penetrating early
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visual processes. Lupyan [54] proved that personal knowledge can
enrich the visual perception of paintings or pictures. Humphrey et al.
[47] discovered that domain knowledge can moderate the influence
of visual saliency in scene recognition. In terms of experience,
Todorovic [76] found that visual elements tended to be grouped if
they had been perceived together during the past experiences of
viewers. Braly [21] discovered that the past experience of viewing
certain visual forms can influence the subsequent perception of
other visual forms. Wiley [84] demonstrated that an individual’s
artistic experience can affect visual perception styles. These studies
inspired the present work. Background stories of graphs could
be considered to be a type of personal knowledge and node-link
diagrams could be considered to be stimuli (similar to paintings
and pictures). Therefore, the present work seeks to understand
the degree to which these non-displayed contexts influence graph
perception.

3 HYPOTHESES

The background story of a graph refers to the textual description
that introduces related information about the graph, such as the real-
world meanings of nodes and edges, the semantics, and the context
of the graph. This study aims to conduct controlled experiments to
investigate the effects of background stories on graph perception.
To guide the experimental design, the following hypotheses were
formulated:

H1: Background stories can affect the visual focus areas of
viewers during open-ended graph explorations. A number of previ-
ous studies in psychology have demonstrated that the focus areas
of viewers while looking at pictures can be affected by personal
knowledge [47]. From an analogy point of view, node-link diagrams
are visual stimuli similar to pictures and background stories can
be regarded as a type of personal knowledge. Thus, we propose
that the focus areas of UBSers, who are unaware of background
stories, will be different from those of FBSers, who are familiar
with background stories. Figure 1 shows an example.

H2: Background stories can affect the performance of identi-
fying graph structures. Previous studies have found that the three
types of graph structures (e.g., high degree node, bridge, and
community) can be widely perceived in node-link diagrams [68],
[87]. Background stories may indicate the existence of the three
types of graph structures. For example, a story mentioned that the
Sharpstone Auto (SA) baseball team had three popular players,
which indicated the existence and even number of high degree
nodes in the friendship network of the team [32]. Thus, we suppose
that FBSers perform better than UBSers when identifying the three
types of graph structures.

H3: Background stories can help viewers construct stable
mental models of graphs. The mental models refer to memorable
and recognizable visual patterns that viewers observe from node-
link diagrams and form in their mind [7], [53], [65]. Background
stories may indicate the existence of stable visual patterns, such
as unique overall shapes and anti-interference visual features. For
example, a story described that a two-part fission event occurred in
the Zachary’s karate club [89], which indicated that the member
friendship network may have a symmetrical shape formed by two
warring communities. Thus, we believe that the mental models
of FBSers are more stable than those of UBSers. Stable mental
models should enable FBSers to perform better than UBSers when
recognizing graphs that they have seen previously.

4 EXPERIMENTAL DESIGN

Three experiments were designed to evaluate the three hypotheses.
The first experiment (Ex1) verified whether background stories
can affect the focus areas of participants during open-ended graph
explorations (H1). The second experiment (Ex2) examined whether
background stories can affect the performance of identifying high
degree, bridge, and community structures (H2). The third experi-
ment (Ex3) investigated whether background stories can help partic-
ipants construct stable graph mental models for graph recognition
(H3). In this section, the design of the experiments is detailed.

4.1 Graph Data Sets
We initially gathered 38 popular real-world graph data sets as candi-
dates. Then, we selected 12 graph data sets from the candidates for
the three experiments, as shown in Table 1. The following criteria
were used when selecting the 12 data sets: (1) Graphs should
cover a range of topics, e.g., social, friendship, sport, animal, and
affiliation networks. The meanings of their nodes and edges should
be familiar and easily understood so that comprehension difficulties
can be reduced and participants’ interest can be stimulated. (2)
Small graphs were prioritized because large graphs would result
in poor readability and overburden participants’ visual perception.
(3) Graphs needed to have rich structures to attract participants
attention during Ex1, contain at least one of the three types of
structures for Ex2, and should present distinct overall shapes
and visual features for Ex3. (4) Graphs should have interesting
background stories that can be edited or condensed to fit within the
duration of the experiments. Moreover, all graphs were treated as
undirected graphs.

A number of steps were undertaken to process the background
stories of the 12 graphs. First, we carefully reviewed the literature
and previous studies to collect multiple story versions for each
graph. Second, pilot studies were run and found that background
stories which were 70 to 120 words enabled participants to finish
reading within a short time. Third, we shortened and edited the
background stories, along with the objective question design in
Ex2, ensuring that key information was retained and trivial infor-
mation was discarded. The background stories of the 12 graphs are
provided in the supplementary materials of this paper.

4.2 Participants
Seventy participants were recruited to participate in the experiments
(i.e., 35 males and 35 females). All participants had a normal or
corrected-to-normal vision. Their ages ranged from 20 to 31 years
old (with a mean value of 24). They were all undergraduate or
graduate students. Forty of the participants had a computer science
background, and the other 30 had non-computer science back-
grounds. The participants were randomly divided into two groups:
FBSers and UBSers. Each group consisted of 20 participants with
a computer science background and 15 participants with non-
computer science backgrounds. The FBSers were asked to learn
the background stories of the graphs in the experiments, whereas
the UBSers were not allowed to read the background stories during
the experiments. Before grouping, we asked each participant if
they were familiar with the provided background stories to avoid
assigning such participants to be UBSers.

4.3 Visual Stimuli
The visual stimuli in the three experiments were the node-link
diagrams that shared visual encodings and graph drawing settings.
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Fig. 2. Interfaces used by the FBSers in the three experiments. (a) The background story of the member friendship network of the Zachary’s karate
club. (b) The visualization of the network used in Ex1, where a FBSer has selected two areas of interest. (c) The visualization result of the network in
Ex2, where a FBSer has selected the node of ID-33 as one of the answers to the current objective question. (d) A blurred graph used in Ex3, where
participants answered if they had seen this graph before.

TABLE 1
Basic information on the experimental graphs and underlying structures for each graph in Ex2. The number of nodes and edges were obtained using

the TULIP software [9].

Graph ID Graph Name Graph Type Nodes Edges
Inquired Structure in Ex2

High Degree Bridge Community

GD1 Co-appearance network of characters in Les Miserables (for training) Co-appearance Network 77 254 Q1

GD2 Animal social network of bottlenose dolphins (for training) Animal Network 62 159 Q3 Q2

GD3 Friendship network of members of the Zachary’s karate club Friendship Network 34 78 Q4 Q5

GD4 Relationship network of characters in Game of Thrones Relationship Network 107 352 Q6

GD5 Friendship network of the Transatlantic Industries (TI) baseball team Friendship Network 13 37 Q7

GD6 Games schedule network of American college football Sport Network 115 615 Q8

GD7 Social network of employees in a wood-processing facility Social Network 24 38 Q10 Q9

GD8 Network of states and legal bases for divorce Affiliation Network 59 225 Q11

GD9 Co-purchasing network of political books in the United States Co-purchasing Network 105 441 Q12

GD10 Friendship network in a German boys’ school class Friendship Network 48 179 Q13

GD11 Strong political tie network in a midwestern county in the US Political Tie Network 14 56 Q14

GD12 Friendship network of the Sharpstone Auto (SA) baseball team Friendship Network 13 39 Q15

As shown in Figure 2, a node-link diagram was drawn within
a rectangle area of 900 × 620 pixels using a white background.
A gray circle with a radius of about 8.43 pixels represented a
node, a gray line with a width of about 2.5 pixels represented an
edge, and the graph layout was generated by the Fast Multipole
Embedder algorithm [9], [23], [43], [88]. The layout of the same
graph was consistent across all three experiments. These encodings
and settings were derived from pilot studies because they gener-
ated relatively high readability measured by the metrics of edge
crossings, edge crossings angle, angular resolution (deviation) [2],
[28], [40] and density [88]. The measurement results are provided
in the supplementary materials.

4.4 Tasks

4.4.1 Experiment 1

Ex1 aimed to understand how background stories influenced the
focus areas of viewers during open-ended graph explorations. The
participants were asked to select any AOIs without limiting the
number of selections in the node-link diagrams generated by the 12
graphs, as shown in Figure 2(b). The nodes or subgraphs selected
by the participants were representations of their focus areas when
observing the node-link diagrams. The selection results would help
verify H1.
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4.4.2 Experiment 2
Ex2 was designed to examine whether background stories can
affect the performance of identifying the three types of graph
structures, i.e., high degree, bridge, and community structures.
The participants were asked to answer predetermined objective
questions that probed a specific case of the three types of graph
structures in the 12 graphs.

The objective question design had two key elements: (1) As we
needed to control the number and difficulty of questions to ensure
that the participants could finish the questions within a limited
time, we designed no more than two objective questions for each
graph and 15 objective questions in total (Table 1). Thus, the graph
structures with relatively high visual saliency were selected and
the three structure types were balanced across the selection. (2)
Each question required the preparation of two descriptive versions
that were tailored to the FBSers and the UBSers but probed the
same graph structure. To design the FBSer version, words that
were in the background story and related to the probed structure
were used. General graph structure descriptions were avoided.
Conversely, only general structure descriptions were used to design
the UBSer version. Several pilot studies were conducted to refine
the two descriptive versions of each question to ensure that they
had a moderate difficulty and that there was consistency within
the probed structure. All objective questions are provided in the
supplementary materials.

Taking the member friendship network of the Zachary’s karate
club as an example, the background story is that the club president
and an important club instructor had a serious conflict over the
price of karate lessons. The supporters of the instructor gradually
formed a new organization, thereby causing fission within the
club. In accordance with the story and the feedback gathered in
pilot studies, two objective questions were designed. The first
question for the FBSers was which nodes represent the president
and instructor? The first question for the UBSers was which nodes
are the top two highest degree nodes in this graph? For the second
question, the FBSers were asked how many factions are in the
club?, whereas the UBSers were asked how many communities
exist in this graph?

Two subjective questions were set to collect information on the
feelings of participants on the difficulty and confidence levels of
answering each objective question. The two subjective questions
were rated by using a five-point Likert scale, ranging from 1 (lowest
level) to 5 (highest level).

4.4.3 Experiment 3
Ex3 investigated whether background stories can help viewers con-
struct stable mental models for graph recognition. The participants
were asked to complete a set of graph recognition trials. In each
trial, either one of the 12 graphs or an interference graph was
presented and the participants were required to judge whether they
had previously seen the graph, as shown in Figure 2(d).

Generating moderately difficult recognition conditions was
crucial because existing psychological research has shown that
personal knowledge has a measurable effect on perceptual anal-
ysis under moderately difficult conditions [21], [58], [66]. Thus,
interference graphs and blurred visualizations were used in Ex3.

The interference graphs used in Ex3 were graphs that were not
the 12 raw graphs but were similar to them. Selecting or generating
interference graphs with a moderate difficulty was challenging
because the interference graphs and raw graphs needed to be
perceptually similar in an overall sense so that they could be

Fig. 3. Four generated interference graph candidates of the member
friendship network of the Zachary’s karate club (Figure 2). Candidates
(a) and (d) had a low and high perceptual similarity with the raw graph,
respectively, whereas candidates (b) and (c) had a moderate perceptual
similarity, according to the feedback gathered in pilot studies.

Fig. 4. Four blurred node-link diagrams with blurring radii of (a) 2.5, (b)
4.5, (c) 6.5, and (d) 9.5, respectively. The blurred diagrams (a) and (b)
had high and moderate recognizability, whereas diagrams (c) and (d) had
low recognizability, according to the feedback gathered in pilot studies.

plausibly grouped into one category, but also adequately distinct in
details to be assigned to different categories [58]. Thus, a four-step
process that integrated the advantages of automatic generation
and manual selection was used to obtain appropriate interference
graphs. (1) We stipulated that an interference graph only needed
to be similar to one raw graph. This controlled the difficulty
of graph perception and interference graph generation. (2) We
estimated the structural properties of each raw graph, including
the number and sizes of communities and the probability of edges
within and between communities. (3) We used a random partition
generator within NetworkX [42] to randomly generate at least 50
interference graph candidates for each raw graph. The generator
guaranteed that each interference graph candidate was similar to
the reference raw graph in terms of structural properties. However,
the perceptual similarity was unclear. (4) We invited 10 volunteers
to visually compare each candidate with the reference raw graph
and rate a perceptual similarity score to each candidate by a seven-
point Likert scale, ranging from 1 (lowest similarity) to 7 (highest
similarity). The candidates with a mean rating of 4 were then
assumed to be appropriate interference graphs with a moderate
similarity (difficulty), as shown in Figure 3.

The difficult visual conditions used in Ex3 included mirroring
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and blurring, which have been widely used in perception studies
[51], [83], [85]. For mirroring, horizontal flip to mirror node-link
diagrams were used because they presented a moderate difficulty
during pilot studies, whereas the vertical flip was difficult. For
blurring, Gaussian blur was used to blur node-link diagrams [35].
To determine the moderate blurring radius, ten radii were initially
selected (i.e., 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, and 10.5).
If the radius of Gaussian blur was large, edges and nodes in
node-link diagrams became difficult to identify clearly (Figure
4). Then, ten volunteers were asked to compare each raw graph
and blurred raw graphs with different radii and rate a subjective
recognizability score of each blurred raw graph on a seven-point
Likert scale, ranging from 1 (lowest recognizability) to 7 (highest
recognizability). The recognizability probed whether viewers could
distinguish the raw graph from the blurred raw graphs. Finally, all
blurred raw graphs with a score of 4 were chosen and it was found
that the mean of their blurred radii was 4.5. Therefore, a blurring
radius of 4.5 was used because this setting can generate moderate
recognizability, as shown in Figure 4.

There were two graph-displaying modes considered: display
multiple graphs at once or display one graph at a time. We opted to
display one graph at a time because it would increase participants’
concentration and would reduce any perceptual bias caused by
size-reduced graphs and comparable hints that could be found
when comparing multiple graphs.

To determine the number of trials to use, we looked towards
the data from pilot studies. This data determined that the volunteers
began losing their focus after viewing 50 graphs due to fatigue.
Thus, forty trials was chosen as the number of trials to use in
Ex3. The 40 trials included 10 blurred raw graphs, 10 blurred and
flipped raw graphs, and 20 blurred interference graphs, where each
raw graph had two interference graphs. The ratio of raw graphs to
interference graphs was 1 to 1, which was consistent with the rule
of moderate difficulty. Moreover, eight trials were also created for
the two training graphs.

Furthermore, two subjective questions were set to collect the
subjective opinions of participants about the difficulty of each
trail and the confidence level while doing so. The two subjective
questions used a five-point Likert scale, ranging from 1 (lowest
level) to 5 (highest level).

4.5 Interface and Apparatus

An interactive visualization system was developed to support the
experimental tasks. As shown in Figure 2, the left section of the
interface contained the control panel, which listed the experimental
graphs, highlighted the currently examined graph, and provided
functional buttons. The right section of the interface had a node-link
diagram and a tip area showing the current task. Three lightweight
interactions were provided to help the participants perform tasks
in Ex1 and Ex2. (1) A range-selecting interaction enabled the
participants to interactively select nodes or areas by using the
mouse to draw rects in Ex1. (2) A redo interaction allowed the
participants to cancel the latest selection in Ex1. (3) A hovering
interaction helped the participants obtain the ID of a certain node
by hovering over the node with the mouse in Ex2. All experiments
were conducted on a desktop computer with a 3.4 GHz processor
and 16 GB of RAM, and a 24-inch monitor with a 1920 × 1200
resolution. A standard wired mouse and wired keyboard were used.

4.6 Procedures

All participants took part in all three experiments. The FBSers were
required to read the background stories before performing the tasks,
whereas the UBSers were not allowed to read the background
stories throughout the experiments. Using this between-subject
design avoided the influence of learning effects with the UBSers,
that is, acquiring related information introduced in the stories, by
drawing lessons from previous perception studies [22], [56], [66].
Objective and subjective questionnaires were used to collect the
answers of the participants. Examples of the questionnaires are
provided in the supplementary materials.

4.6.1 Experiment 1
The procedure of Ex1 consisted of four stages: introduction, tutorial,
training, and formal study. The task of Ex1 was to select AOIs in
each of the 12 graphs. The GD1 and GD2 were for training, and
the other 10 graphs were used within the formal study.

Introduction stage: The participants filled out a demographic
survey with information about age, gender, and educational back-
ground. The instructors introduced the purpose of the study, the
tasks, and the procedures of the three experiments and demonstrated
the interface and questionnaires. The instructors also introduced
basic concepts related to abstract graph models, node-link diagrams,
typical graph structures, and real-world meanings of abstract mod-
els. This stage took approximately 15 min.

Tutorial stage: This stage familiarized the participants with
the interface and task. The instructors guided the participants in
completing the first training graph. This stage took approximately
5 min.

Training stage: This stage ensured that the participants mastered
how to use the interface to complete the task. The participants were
asked to complete the task using the first and second training
graphs. They were allowed to ask questions. If they were confused
with the interface or task, the participants would be reverted back
to the previous stage. This stage took approximately 10 min.

Formal study stage: The participants were required to complete
the AOI selection task on the 10 graphs one by one (i.e., 10 trials).
The graph order was randomized to mitigate learning effects. Before
performing the task on a graph, the FBSers were given 1 min to
read the background story of the graph. Assuming a normal reading
speed and story length of 120 words, this duration enabled the
FBSers to read the story up to three times if desired. This step
was not preformed by the UBSers. After completing all graphs,
we conducted a short interview. The participants were allowed
to review their selection results and encouraged to provide their
thoughts. This stage had no time limit. Most of the participants
were able to complete a trial within 2 min. Thus, this stage took
approximately 30 min.

4.6.2 Experiment 2
After a 10 min break, the participants proceeded to Ex2. The task of
Ex2 was to answer predetermined objective questions in each graph.
The procedure of Ex2 was similar to that of Ex1. In the tutorial and
training stages, the instructors helped the participants familiarize
themselves with the task by using the two training graphs. In the
formal study stage, the participants needed to complete the task
on the 10 graphs one by one with a random order (i.e., 10 trials),
and the FBSers were allowed to read the background stories before
performing the task. After completing an objective question, the
participants needed to rate the difficulty and confidence levels of
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answering each question on the basis of their subjective feelings
using a five-point Likert scale. After completing all graphs, a
short interview was conducted, and the participants reviewed their
answers and provided their feedback. No time limit was imposed
during Ex2. The participants generally completed a graph within 3
min. Thus, the formal study stage took approximately 40 min.

4.6.3 Procedure of Experiment 3

After Ex2, the participants rested for at least 15 min, and then
proceeded to Ex3. The task of Ex3 was to answer whether a graph
visualized in a blurred node-link diagram had been seen before
or not. The tutorial and training stages of Ex3 were similar to
those of Ex1 and Ex2. The formal study stage consisted of learning
and testing sessions. In the learning session, the participants were
asked to view all 10 raw graphs one by one. The display time of a
raw graph was 1 min. During this time, the background story of a
raw graph was displayed alongside the raw graph for the FBSers.
If the participants were convinced that they had memorized the
graph firmly, they could proceed to the next graph. In the testing
session, the participants were asked to complete 40 trials. Each
trial displayed a single blurred node-link diagram that was possibly
generated by a raw graph, a flipped raw graph, or an interference
graph. The participants answered whether they had seen the graph
before or not without time limits. The raw graphs and flipped raw
graphs were considered as the graphs that had been seen previously.
Similar to Ex2, after completing a trial, the participants needed
to rate the difficulty and confidence levels of the trial by using a
five-point Likert scale. After completing all trials, a short interview
was conducted. The formal study stage took approximately 40
min. The participants who completed the three experiments were
compensated with $10 per hour.

5 EXPERIMENTAL RESULTS

5.1 Analysis Approach

The experimental results can be divided into quantitative and
qualitative parts. Quantitative results included the AOI selections
and selection sequences of each participant in each graph (Ex1)
and the accuracy and time of each participant in completing each
objective question (Ex2) or trial (Ex3). Qualitative results were the
subjective feelings of each participant in answering each objective
question (Ex2) or trial (Ex3) in terms of difficulty and confidence
levels and the feedback of the participants in the interviews (Ex1,
Ex2, and Ex3). In addition to mean values and standard deviation
calculations, the results were analyzed from two main aspects as
follows.

Similarity measurement: This analysis approach was for Ex1.
We designed three similarity indicators to quantitatively measure
the differences of focus areas between the FBSers and UBSers
in a graph because the results of Ex1 were unfit for traditional
significance analysis. The value ranges of the three indicators
were from 0 to 1, with larger values indicating a higher degree of
similarity. The definitions and calculations of the indicators are
detailed as follows.

(1) The spatial-distribution similarity (PS) of AOIs measured
the similarity between two AOI distributions in a graph layout
regardless of the structural meaning of AOIs. The two distributions
were generated from the AOIs selected by the FBSers and UBSers
in the same graph, respectively. The calculation of PS had four steps.

First, we regarded the layout of a graph as an n × m pixel-based
position matrix notated as

PMt,k =


p11 . . . p1 j . . . p1m
. . . . . . . . . . . . . . .
pi1 . . . pi j . . . pim
. . . . . . . . . . . . . . .
pn1 . . . pn j . . . pnm


where t and k represent the type of participants and the graph ID,
respectively; pi j represents the number of entries of the pixel at
row i and column j with an initial of 0. Second, we constructed
a mapping table to convert each node in the layout to the corre-
sponding pixels in the matrix. Third, we counted the entries made
by the FBSers and UBSers for each node and obtained PMFBSers,k
and PMUBSers,k based on the mapping table. Finally, we calculated
the similarity of the two matrices through the computation of a
min-max normalization of Euclidean distance [71].

(2) The structure similarity (SS) of AOIs measured the similar-
ity between the specific graph structures concerned by the FBSers
and UBSers in the same graph. We selected four representative
types of graph structures, namely, high degree, bridge, community,
and other structures, because the former three types are popular in
graph perception [68], [87] and were examined in Ex2. The calcu-
lation of SS involved three steps. First, we manually categorized all
AOIs into the four types. Second, we counted the entries made by
the FBSers and UBSers for each type and constructed two structure
vectors notated as:

SVt,k = (sh,sb,sc,so)

where sh, sb, sc, and so represent the numbers of high degree,
bridge, community, and other structures, respectively. Third, we
calculated the similarity between SVFBSers,k and SVUBSers,k by
using a min–max normalization Euclidean distance.

(3) The order similarity (OS) measured the similarity between
the selection orders of different types of structures performed by
the FBSers and UBSers for the same graph. Its calculation was
based on the four structure types and the selection sequences of
the participants. First, we counted the entries of the FBSers and
UBSers for each type in order of 1st, 2nd, 3rd, and others in a graph.
Then, we constructed two matrices for the FBSers and UBSers,
respectively, notated as

OMt,k =


o1−h o1−b o1−c o1−o
o2−h o2−b o2−c o2−o
o3−h o3−b o3−c o3−o
oo−h oo−b oo−c oo−o


where the four rows represent the orders of 1st, 2nd, 3rd, and
others, respectively; the four columns represent the four types of
graph structures, respectively; an element represents the number of
entries of a certain structure type in a specific order. Finally, we
calculated the similarity between OMFBSers,k and OMUBSers,k by
using min–max normalization Euclidean distance.

Significance analysis: This analysis approach was for Ex2
and Ex3. A series of significant tests were performed to exam-
ine the accuracy differences between the FBSers and UBSers
in Ex2 and Ex3. We used Shapiro–Wilk tests to examine the
normality of experimental results. As most results did not follow
the normal distribution (ρ < 0.05), we thus used non-parametric
Kruskal–Wallis tests to examine significant differences (ρ < 0.05).
We also reported Cohen’s d to communicate effect sizes [24]. If a
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Fig. 5. Results of AOI selections made by the FBSers and UBSers per graph in Ex1. Nodes or areas that have a large number of entries are
represented by warm colors, whereas nodes or areas that have a small number of entries are represented by cold colors.

significant difference was found, then the winner was determined
based on the corresponding mean values of accuracy.

5.2 Results of Experiment 1
We assumed that background stories can affect the focus areas of the
participants during open-ended graph explorations (H1). The mean
values of the three similarity indicators of the 10 graphs (OS: µ =
0.46; SS: µ = 0.47; PS: µ = 0.58) fell into the medium similarity
level (i.e., 0.4, 0.6), thereby indicating that the focus areas of
the FBSers were moderately similar to those of the UBSers.
That is, the background stories affected the graph explorations of
the FBSers. We analyzed the indicator results shown in Table 2
and the PM results visualized by using the heatmaps with the same
scale [1] (Figure 5) as follows. Detailed SV and OM results are
provided in the supplementary materials.

5.2.1 Similarity Analysis

As introduced previously, we analyzed the similarity between the
focus areas of the FBSers and UBSers using the three indicators.

The OS results indicated that the background stories had
a medium level of effect on the selection sequences of the
participants. The main reason was that the stories implied the
existence of graph structures, specifically for high degree, bridge,
and community structures. The FBSers may have formed pre-
conceived notions when learning such existence information, and
thus preferentially sought implied structures during graph explo-
rations. We took GD10 (Figure 5(o−p)) and GD7 (Figure 5(i−j))
as examples. The story of GD10 implied the existence of high
degree nodes (i.e., popular classmates) in a school class friendship
network. We observed that the FBSers mainly sought high degree
nodes in the central region of the graph, whereas the UBSers were
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TABLE 2
Quantitative results of Ex1 in terms of the three similarity indicators. We
define three similarity levels as low [0, 0.4], medium (0.4, 0.6), and high
[0.6, 1] and denote them as “L”, “M”, and “H”, for reading convenience.

Graph ID
Similarity Indicators

OS SS PS

GD3 0.44 M 0.42 M 0.61 H

GD4 0.57 M 0.60 H 0.46 M

GD5 0.46 M 0.49 M 0.49 M

GD6 0.61 H 0.57 M 0.57 M

GD7 0.40 L 0.43 M 0.60 H

GD8 0.31 L 0.36 L 0.51 M

GD9 0.53 M 0.51 M 0.71 H

GD10 0.24 L 0.31 L 0.51 M

GD11 0.50 M 0.54 M 0.70 H

GD12 0.55 M 0.46 M 0.60 H

largely attracted by peripheral nodes. The results of OMFBSers,10
and OMUBSers,10 showed that high degree structures received 25
and 7 entries of 1st from the FBSers and UBSers, respectively,
whereas other structures received 5 and 17 entries of 1st from the
FBSers and UBSers, respectively. Many of the UBSers commented,
“No particular structures seem to be in the dense central area of
the graph, but those nodes at the margin areas are interesting.”
The story of GD7 emphasized multilingual employees responsible
for communication between groups that were defined based on
language in a wood-processing facility, which implied the existence
of bridge structures. We observed that most of the FBSers selected
bridges first, whereas only nearly half of the UBSers initially
selected bridges. The results of OMFBSers,7 and OMUBSers,7 showed
that bridge structures received 26 and 14 entries of 1st from the
FBSers and UBSers, respectively, whereas community structures
received 8 and 20 entries of 1st from the FBSers and UBSers,
respectively.

The SS results indicated that the background stories moder-
ately influenced the number of selecting specific graph struc-
tures. The main reason was that some of the background stories
directly or indirectly provided the number of graph structures that
existed in graphs, which could have produced an anchoring effect
[33] that drove the FBSers to subconsciously present a minimum
number of specific graph structures to be selected in a graph. For
example, the story of GD3 had two protagonists: the president and
leading instructor of the Zachary’s karate club, which indicated
that at least two high degree nodes existed in the graph. We noticed
that many of the UBSers only selected one high degree node. The
results of SVFBSers,3 and SVUBSers,3 showed that 2.29 and 1.00 high
degree nodes were selected on average by each FBSer and UBSer,
respectively. Such an anchoring effect also appeared when selecting
bridges in GD7 and high degree nodes in GD10 and GD12.

The PS results indicated that the background stories had a
medium level of effect on the focus areas of the participants
regardless of specific graph structures. We took GD4 and GD5,
which had relatively low PS scores, as examples to explain two
findings in the PS results. The story of GD4 mentioned the slighted
Baratheons and the exiled Daenerys in the Game of Thrones novel.
We found that the two small clusters far from the dense central
area of the graph were concerned by the FBSers more than the
UBSers, as shown in Figure 5(c−d). This example reflected that
the background stories could suggest the positions of important

structures in the layout. The story of GD5 mainly described popular
members in the TI baseball team. We found that many of the FBSers
only selected high degree nodes, but the UBSers selected almost all
nodes in the graph, as shown in Figure 5(e−f). Some of the UBSers
commented, “Each node is worth exploring in such a small-sized
graph.” This example reflected that the background stories may
have bounded the participants’ focus areas.

5.3 Results of Experiment 2

We assumed that background stories can affect the performance
of identifying high degree, bridge, and community structures (H2).
This hypothesis was partially confirmed. The background stories
were found to significantly affect community structure identi-
fications (ρ = 0.000 < 0.05, Cohen’s d = 0.521), but not high
degree structure (ρ = 0.644, Cohen’s d = 0.039) and bridge
structure (ρ = 0.859, Cohen’s d = 0.062) identifications in terms
of accuracy. We analyzed the quantitative and qualitative results
of Ex2 by structure type (Table 3) as follows. Detailed quantitative
and qualitative results by objective question are provided in the
supplementary materials.

TABLE 3
Quantitative and qualitative results of Ex2 by structure type in terms of
mean accuracy, difficulty, and confidence level. The blue colors indicate

significant differences between the FBSers and UBSers in terms of
accuracy.

Structure Type
Accuracy Difficulty Confidence

FBSers UBSers FBSers UBSers FBSers UBSers

High degree 0.80 0.79 2.48 2.33 3.80 3.72

Bridge 0.61 0.64 2.29 2.20 3.96 3.88

Community 0.58 0.33 2.69 2.96 3.61 3.33

5.3.1 Structure Identification Analysis
We report the detailed analysis of comparing the participants’
performance on the identifications of three types of graph structures.

No significant difference was found in high degree struc-
ture identifications in terms of accuracy. We had two observa-
tions in Ex2. The first exhibit showed that the participants estimated
the degree of a node by assessing the number of edges centered on
it, which could be considered as a numerical ground truth [3], [87].
The second exhibit showed that the 10 experimental graphs were
small-sized and visualized without substantial visual clutter, which
ensured that the numerical ground truth could be easily perceived.
As a result, the information related to high degree structures in the
background stories had minimal effects on accuracy. Moreover, we
found that some of the background stories implied approximate
locations of high degree structures in the node-link diagrams.
These locations were perceptual “anchors” that facilitated structure
identifications. For example, Q4 (GD3) inquired two important high
degree nodes in the member friendship network of the Zachary’s
karate club. Some of the FBSers stated that “the two-part fission
event of the club reminds me to seek high degree nodes on both
sides of the graph.”

No significant difference was found in bridge identifica-
tions in terms of accuracy. The mean accuracy of the FBSers was
close to that of the UBSers. The reason was that bridges generally
appeared in sparse boundary areas among dense communities. The
participants can clearly observe bridges and visual community
context for accurate identifications.
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The FBSers performed significantly better than the UB-
Sers in identifying communities in terms of accuracy (ρ =
0.000, Cohen’s d = 0.521), specifically for Q5, Q8, and Q12. The
reasons were twofold. First, communities may overlap, which could
have introduced visual ambiguities in community distinguishing
[79]. Second, the community-related objective questions mainly
inquired about the exact or approximate number of communities
in a graph, and the corresponding background stories implied the
answers. For Q5 (GD3, ρ = 0.018, Cohen’s d = 0.588), as shown
in Figure 5(a−b), some of the FBSers stated, “The story describes
the fission event of the club. Thus, I think there are two factions in
the graph.” For Q8 (GD6, ρ = 0.000, Cohen’s d = 1.115), as shown
in Figure 5(g−h), some of the FBSers stated, “I have learned
from the background information that each conference involves
approximately 8 to 12 teams in American college football games.
Thus, I can estimate the number of conferences by viewing the
graph.” For Q12 (GD9, ρ = 0.000, Cohen’s d = 1.014), as shown
in Figure 5(m−n), many of the FBSers commented, “The story
mentions that political ideologies mainly include ‘liberal’, ‘neutral’,
and ‘conservative’. Thus, the co-purchasing network of political
books should have three groups.” Moreover, we noticed that the
stories of GD4 and GD7 exerted a relatively low influence on
community identifications because the community information in
these stories was obscure or the communities were clearly presented
without visual ambiguities. Some of the FBSers suggested that the
community structure of the Game of Thrones character relationship
network (GD4) was complex, as shown in Figure 5(c−d), and
the names of a few families provided in the story had limited
usefulness in judging the number of families. Some of the UBSers
commented that Q9 was the easiest among all community-related
questions because the three communities in the wood-processing
facility (GD7) were well-separated in the node-link diagram, as
shown in Figure 5(i−j).

5.3.2 Participants’ Ratings
The qualitative results of Ex2 were consistent with the quantitative
results. The mean ratings of the FBSers and UBSers were close
in high degree and bridge identifications in terms of difficulty
and confidence levels ranging from 1 (lowest level) to 5 (highest
level). The mean difficulty rating of the FBSers was lower than that
of the UBSers and the mean confidence rating of the FBSers
was higher than that of UBSers in community identifications.
Moreover, communities obtained the highest mean difficulty rating
and the lowest mean confidence rating among the three structure
types, which indicated that the background stories helped complete
relatively difficult tasks. Specific to individual objective questions,
Q6 (GD4) and Q8 (GD6) received many high difficulty ratings
(µ > 3) because they were community-related questions. Q13
(GD10), which inquired about high degree structures, obtained a
mean rating (µ = 3.37) of high difficulty because more than 10
high degree nodes were concentrated in the central dense area of
the graph, as shown in Figure 5(o−p).

5.4 Results of Experiment 3

We assumed that background stories can help viewers construct
stable mental models for graph recognition under difficult visual
conditions (H3). This hypothesis was fully confirmed. The FB-
Sers performed significantly better than the UBSers in graph
recognition in terms of accuracy (ρ = 0.000 < 0.05, Cohen’s d
= 0.139). The mean accuracy of 40 trials of the FBSers (µ = 0.76)

TABLE 4
Quantitative and qualitative results of Ex3 by graph (4 trials per graph) in
terms of mean accuracy, difficulty, and confidence level. The blue colors
indicate significant differences between the FBSers and UBSers in terms

of accuracy.

Graph ID
Accuracy Difficulty Confidence

FBSers UBSers FBSers UBSers FBSers UBSers

GD3 0.68 0.63 2.58 2.72 3.51 3.28

GD4 0.84 0.67 2.34 2.55 3.76 3.54

GD5 0.88 0.76 2.28 2.41 3.96 3.60

GD6 0.72 0.72 2.41 2.55 3.72 3.54

GD7 0.86 0.80 2.07 2.33 4.07 3.78

GD8 0.78 0.69 2.24 2.44 3.82 3.58

GD9 0.67 0.69 2.68 2.70 3.58 3.33

GD10 0.64 0.70 2.51 2.52 3.57 3.44

GD11 0.76 0.69 2.24 2.21 3.89 3.77

GD12 0.79 0.65 2.19 2.29 3.85 3.68

was slightly higher than that of the UBSers (µ = 0.70). Specific to
individual graphs, significant differences were found in recognizing
GD4 (ρ = 0.001, Cohen’s d = 0.387), GD5 (ρ = 0.013, Cohen’s d
= 0.301), and GD12 (ρ = 0.008, Cohen’s d = 0.322), as shown in
Table 4.

5.4.1 Quantitative Analysis
We obtained two important findings from the quantitative results of
Ex3. The first finding was that the background stories helped the
FBSers learn immutable visual features, including symmetry,
collinearity, and orthogonality [59], from the graph visualizations.
There were three facets to these visual features. First, they were
susceptible to interference from blurring and flipping. Second,
perfectly preserving them in generated interference graphs was
difficult. Third, some of the background stories implied their
existence. Therefore, the FBSers were able to easily notice them
and consciously or subconsciously internalized them as graph rep-
resentations to construct stable mental models for graph perception.
For example, many of the FBSers confirmed that the slighted
Baratheons and the exiled Daenerys in the Game of Thrones novel
(GD4) were two small clusters far from the dense central area
of the graph, and they were symmetrically distributed. Some of
the FBSers commented, “The background information of the SA’s
baseball team describes three key players, and I find the three
players are almost collinear in the central area of the graph.
This feature is very helpful in graph recognition (GD12 shown
in Figure 5(s−t)).” A few of the FBSers said, “I notice several
orthogonal edges converging on an important person mentioned in
the background story. I use this pattern to distinguish this graph
from others (GD11 shown in Figure 5(q−r)).”

The second finding was that the background stories simu-
lated outline associations of the FBSers. In outline associations,
viewers build associations between the outlines of perceived visual
stimuli and those of familiar objects [59]. For example, some
of the FBSers suggested that the outlines of GD4, GD5, and
GD6 resembled a person raising both hands, a whale, and the
head of a pig, respectively. The graph mental models that were
formatted based on outline associations were not easy to remove
or to be affected by blurring, and interference graphs rarely pre-
sented consistent outlines with reference raw graphs. Interestingly,
such outline associations were mainly reported by the FBSers,
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Fig. 6. Results on the influence of participants’ professional backgrounds: (a) mean similarity values of the three similarity indicators in Ex1; (b) mean
accuracy values when identifying high degree nodes, bridges, and communities in Ex2 and (c) mean accuracy values in Ex3. Error bars show 95%
confidence intervals.

and no aforementioned associated objects were described in the
background stories. This situation indicated that the background
stories played the role of stimulating associations rather than
straightforwardly telling the FBSers what outlines looked like.

Moreover, the mean accuracies of the FBSers were lower than
those of the UBSers when recognizing GD9 and GD10. For GD9
(Figure 5(m−n)), the graph presented an overall shape with two
visual communities, which was not consistent with the ground
truth of three communities mentioned in the background story.
For GD10 (Figure 5(o−p)), most of the participants reported that
no prominent visual features existed in the graph except for a
ball-like cluster in the central area. Thus, the circumstances of
recognitive ineffectiveness of the background stories were twofold.
The information in a background story had poor correspondence
with graph structures or visual features. A graph had no noticeable
visual features.

5.4.2 Participants’ Ratings
The qualitative results of Ex3 were consistent with the quantitative
results. The mean difficulty rating of the FBSers (µ = 2.35) was
slightly lower than that of the UBSers (µ = 2.47), and the mean
confidence rating of the FBSers (µ = 3.77) was higher than that of
the UBSers (µ = 3.55). For individual graphs, GD7 (Figure 5(i−j))
obtained a relatively low mean difficulty rating because of small
size and apparent graph structures. GD9 (Figure 5(m−n)) obtained
a relatively high mean difficulty rating due to the absence of notice-
able visual features. Moreover, when asked about the three difficult
conditions in the interviews, many of the participants suggested
that the blurred interference graphs affected graph recognition
more than the blurred and flipped raw graphs, which affected graph
recognition more than the blurred raw graphs.

5.5 Influence of Participants’ Backgrounds
We were interested in whether the participants’ professional back-
grounds had an influence on graph perception. We divided the
participants into two groups named computer-science group (40
participants) and non-computer-science group (30 participants)
based on their professional backgrounds. We re-analyzed the raw
results of the three experiments according to the two groups. Main
results are shown in Figure 6 and detailed results are provided in
the supplementary materials.

In Ex1, the mean values of the three similarity indicators of
the computer-science group (OS: µ = 0.49; SS: µ = 0.51; PS:
µ = 0.56) were larger than those of the non-computer-science
group (OS: µ = 0.36; SS: µ = 0.39; PS: µ = 0.51) and the mean
OS and SS values of the non-computer-science group fell into a low

similarity level [0.0, 0.4]. The reasons were twofold. First, most
of the computer science participants had learned relevant subjects,
such as data structures, graph theory, or complex networks, and
grasped the elementary knowledge of typical graph structures (e.g.,
high degree nodes, bridges, and communities), which led them
to give priority to these structures. Taking GD10 (Figure 5(o−p))
as an example, 89 and 32 high degree nodes were selected in
total by the computer-science and non-computer-science groups,
respectively. Many participants in the computer-science group
focused on high degree nodes at the very beginning due to having
knowledge that high degree nodes play an important role in a graph.
Second, the participants in the non-computer-science group had
diverse professional backgrounds, which may have lead to their
differentiated preferences in selecting AOIs. For example, the story
of GD8 described the relationship between different states and legal
bases for divorce. Some participants in the non-computer-science
group knew much about the United States from state to state while
others were interested in divorce laws, leading to differences in
their AOI selections, as shown in Table 2 and (Figure 5(k−l))).

In Ex2, the mean accuracy values of the computer-science
group when identifying the three types of structures (high
degree, µ = 0.81; bridge, µ = 0.64; community, µ = 0.49) were
higher than those of the non-computer-science group (high
degree, µ = 0.77; bridge, µ = 0.60; community, µ = 0.41). No
significant difference was found between the two groups in terms
of accuracy (high degree: ρ= 0.345 > 0.05, Cohen’s d = 0.102;
bridge: ρ = 0.157 > 0.05, Cohen’s d = 0.071; community: ρ =
0.146 > 0.05, Cohen’s d = 0.157), but a relatively large difference
was found when identifying communities (computer-science group:
µ = 0.49; non-computer-science group: µ = 0.41).

In Ex3, the computer-science (µ = 0.74) and non-computer-
science (µ = 0.72) groups obtained approximate mean accu-
racy values in graph recognition under difficult visual condi-
tions. No significant difference was found between the two groups
in terms of accuracy (ρ = 0.499 > 0.05, Cohen’s d = 0.026).
Feedback from the participants showed that they mainly adopted
the strategy of outline associations for graph memorization and
recognition. For example, some of the participants imagined GD3 as
a sailing boat and GD4 as a person raising both hands. Such outline
associations were slightly related to the specialized knowledge
of typical graph structures but largely based on perceptions of
common objects in daily life.

5.6 Summary of Results
The results of Ex1 indicated that the background stories affected
the sequences, numbers, and positions of AOI selections made by
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the FBSers. The reason was twofold. The background informa-
tion about the existence and positions of graph structures formed
preconceived notions. Thus, the FBSers preferentially selected
preconceived structures. The number of graph structures implied in
the background stories produced an anchoring effect that drove the
FBSers to subconsciously present a minimum number of selecting
specific structures.

The results of Ex2 reflected that the background stories sig-
nificantly affected community identifications in terms of accuracy
because many communities in the experimental graphs overlapped,
and the UBSers had difficulty distinguishing them without knowing
the relevant information in the background stories. However, the
stories had minimal effects when identifying high degree and bridge
structures because the small-sized experimental graphs caused little
visual clutter. Thus, the participants can perceive them by using the
numerical ground truth and displayed community context.

The results of Ex3 confirmed that the background stories helped
the FBSers construct stable mental models to perform accurate
graph recognition under difficult visual conditions. The background
stories facilitated the FBSers to learn immutable visual features
(i.e., symmetry, collinearity, and orthogonality) and simulated their
outline associations with familiar objects. Immutable visual features
and outline associations created stable graph representations that
helped with mental model formation.

The results of influence analysis of professional backgrounds
indicated that the participants’ backgrounds lead to different AOI
selections during open-ended graph explorations (Ex1). There was
no significant difference in the performance of identifying the three
types of structures (Ex2) and graph recognition under difficult
visual conditions (Ex3).

6 DISCUSSION

In this section, we discuss the limitations of this study, provide
implications for visualization design, and suggest extensions for
future work.

6.1 Limitations
We discuss the limitations of this study from the aspects of data,
experimental design, and results.

The graph data sets used in the experiments were not extensive.
We initially collected 38 candidates with diverse types and sizes, but
only one-third of them met all the four selection criteria. Specialized
graphs, such as biological networks [72] and autonomous system
networks [57], were difficult for our participants to understand.
Large-scale graphs caused visual clutter to hinder Ex1 and Ex2.
Some candidates presented similar overall shapes that were inadapt-
able for Ex3. Three possible directions can support the expansion of
experimental graph data sets: (1) conducting the three experiments
separately so that mid-sized graphs can be used for Ex1 and Ex3,
(2) providing zooming or fisheye interactions for mid-sized graphs
in Ex2, and (3) inviting domain experts to analyze specialized
graphs.

The scope of bridge structures in this study was not as strict
as that in graph theory. In graph theory, a bridge is an edge
whose removal increases the number of connected components
of a graph [18]. In this study, we considered nodes and edges that
connect any two groups/communities as bridges. This was done for
two reasons. First, our scope was close to the descriptions in the
background stories. Second, theoretical bridges were not prevalent
in the experimental graphs. The latter reason also resulted in a small

number of bridge-related objective questions in Ex2. The number
of participants in this study was limited. Although we controlled
the number of graphs and questions, the entire set of experiments
still lasted at least three hours. We did not use crowdsourcing
techniques or platforms, such as Amazon Mechanical Turk [19],
to increase the size of our participant pool because a previous
study found that crowdworkers may not be particularly interested
in carefully reading the provided narratives and may prefer to
quickly complete their tasks instead [27]. This behavior would
not have been suitable for our experimental design because our
design required close supervisions due to the similarities between
experiments and relatively complicated tasks. Therefore, it was not
clear what the results would be if a large number of volunteers
participate in the experiments.

This study investigated the short-term memory but not the
long-term memory of graphs [59] because the participants started
the testing session immediately after the learning session in Ex3.
This study adopted two types of difficult visual conditions in
Ex3, namely, mirroring and blurring, but did not investigate their
mechanisms to influence graph memorization or recall. This study
did not evaluate the effect of background stories on increasing
the engagement of the participants during interactive graph ex-
plorations. A previous study [20] suggested that the engagement
was an interesting topic in storytelling visualizations and can
be defined from either a behavioral or an emotional perspective.
This study used the same graph layout, but a previous study
showed that perceived structures were different as the spatial
arrangement of a graph changes [61]. Thus, we were unsure what
the experimental results would be with other layouts. This study
recorded the duration results but did not provide a detailed result
analysis of duration. Pilot studies showed that some participants
were slightly hesitant sometimes to select specific nodes/structures
in some graphs (Ex1 and Ex2) or determine answers under difficult
visual conditions (Ex3). We decided to allow answer modifications
before proceeding to the next graph (Ex1), objective question (Ex2),
or trial (Ex3) without time limits in the formal experiment. Thus,
large differences in time consumption were observed among the
participants in the three experiments.

6.2 Implications

This research provides design implications for graph storytelling
and interactive graph explorations.

Learning from the results of Ex1, using background stories can
be to guide the attention of viewers and stimulate their interest
while exploring target graph structures, such as high degree, bridge,
or community structures, because not all structures in a graph are
of equal importance in a given analysis scenario and the focus
areas of viewers can be distracted by trivial structures. For example,
if we expect viewers to pay attention to high degree nodes in a
graph, we should explicitly describe the existence of several central
characters in the background story of the graph.

The results of Ex2 indicate that the background story of a
graph as a visual annotation is crucial during interactive graph
explorations, especially for community structure analysis. This is
because visual ambiguities of community structures are generally
larger than those of high degree and bridge structures in node-
link diagrams. For example, to help viewers accurately identify
communities in the visualization of a graph, we can provide infor-
mation about the number or size of a community structure in the
background story.
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The results of Ex3 suggest that providing background stories
can facilitate dynamic graph analysis [8], [13] and graph com-
parison analysis [6], [14]. This is because stable graph mental
models can help viewers perceive the changes of overall shapes
or important structures in graph visualizations. For example, if the
background story of a dynamic graph mentions that the characters
connecting two communities disappear after an important event,
the change of bridging structures in graph visualizations will be
easily noticed by viewers.

Taking all the results together, the design of graph storytelling
should consider the concurrent display and collaborative design
of narrative texts and graph visualizations to create a synergy
effect [4], [67]. The concurrent display refers to the presentation
of narrative texts together with graph visualizations on the screen.
Texts convey the real-world meanings of entities, relations, and
structures in graphs. Visualizations, on the other hand, provide
supporting evidence and relevant details [69], which can improve
viewers’ comprehension and ability to recognize informaiton [60],
[86]. The collaborative design refers to the iterative refinement
of displayed texts and visual encodings to ensure the dual-way
confirmation of textual and visual information. A good narrative
design is as important as a good visualization design [27], [92]. That
is, the design of visual encodings should consider that narrative
texts can affect the observing orders and focus areas of viewers.
Narrative texts should be refined according to observable visual
patterns in node-link diagrams. Moreover, the design of graph
storytelling should consider the viewers’ professional backgrounds,
which can moderately influence their visual perceptions of graph
visualizations.

7 CONCLUSION AND FUTURE WORK

This research evaluated the effects of background stories on graph
perception. The experimental findings demonstrated that back-
ground stories can affect the focus areas of viewers. It also found
that background stories can significantly affect community identi-
fication and graph recognition. This work is the first attempt that
evaluates the effects of background stories on graph perception.
The findings may bring new insights into the inherent laws of graph
perception and new considerations about the design of storytelling
visualizations and interactive graph explorations.

Many future extensions can be conducted. First, a wide range
of graphs and participants should be included to understand the
generalizability of the findings. Second, eye-tracking techniques
[17], [62] could be used in Ex1 to record more specific metrics
(e.g., fixation duration [52]) that allude to areas of interest. Third,
additional experimental conditions, such as including other graph
structures (i.e., margin structures) in Ex2 and more difficult visual
conditions (i.e., rotation [78] and size reduction [26]) in Ex3, should
be considered. Finally, while the effects of background stories may
improve the long-term memory of graphs and the engagement
of users, this needs to be explicitly confirmed by future studies.
Moreover, we hope that this study will inspire researchers to further
investigate the effects of other personal knowledge and experience
on graph perception. We also expect that the effects of background
stories on visual perceptions of abstract data models, such as trees,
tabulations, and trajectories, will be evaluated in the future.
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